0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зарядное устройство регулировкой конденсаторами

Зарядное устройство регулировкой конденсаторами

Любительская Радиоэлектроника

Зарядное устройство для автомобильных аккумуляторов

Известно, что эксплуатация к хранение разряженных аккумуляторов — одна из главных причин сокращения их срока службы. Находящийся на хранении заряженный аккумулятор через некоторое время в результате саморазрядки переходит в разряженное состояние. У новых свинцовых и миниатюрных никель-кадмиевых аккумуляторов саморазрядка равна 0,5. 2% их емкости в сутки, а у бывших в эксплуатации — существенно выше. Для увеличения срока службы аккумуляторов следует их постоянно поддерживать в полностью заряженном состоянии, компенсируя саморазрядку сравнительно небольшим током от маломощного зарядного устройства. Оптимальным принято считать такой режим зарядки, когда, зарядный ток численно равен 0,1 от номинальной емкости аккумулятора. Тем не менее, сейчас некоторые заводы-изготовители аккумуляторов с целью увеличения срока их службы рекомендуют двадцатичасовой режим зарядки током, численно равным 5% номинальной емкости. Иначе говоря, зарядка аккумулятора током, существенно меньшим
оптимального, благоприятно сказывается на сроке его службы, но требует соответственно большего времени.
Таким образом, в ряде практических случаев сложные и тяжелые зарядные устройства, часто снабженные автоматическим управлением, могут быть заменены простыми, малогабаритными и экономичными. Одно из таких устройств описано ниже. Его можно использовать для зарядки автомобильных аккумуляторных батарей емкостью до 100 А-ч, для зарядки в режиме, близком к оптимальному, мотоциклетных батарей, а также (при несложной доработке) в качестве лабораторного блока питания.
Зарядное устройство выполнено на основе транзисторного двухтактного преобразователя напряжения с автотрансформаторной связью и может работать в двух режимах — источника тока и источника напряжения. При выходном токе, меньшем некоторого предельного значения, оно работает как обычно — в режиме источника, напряжения. Если попытаться увеличить ток нагрузки сверх этого значения, выходное напряжение будет резко уменьшаться — устройство перейдет в режим источника тока. Режим источника тока (обладающего большим внутренним сопротивлением) обеспечен включением балластного конденсатора в первичную цепь преобразователя.

Рис.1 . Зарядное устройство для автомобильных аккумуляторов . Принципиальная схема

Схема зарядного устройства представлена на рис.1. Сетевое напряжение через балластный конденсатор С1 поступает на выпрямительный мост VD1. Конденсатор С2 сглаживает пульсации, а стабилитрон VD2 стабилизирует выпрямленное напряжение. Преобразователь напряжения собран на транзисторах VT1, VT2 и трансформаторе Т1. Диодный мост VD3 выпрямляет напряжение, снимаемое со вторичной обмотки трансформатора. Конденсатор С3 — сглаживающий.
Преобразователь работает на частоте 5. 10 кГц. Стабилитрон VD2 одновременно защищает от перегрузки по напряжению транзисторы преобразователя на холостом ходе, а также при замыкании выхода устройства, когда напряжение на выходе моста VD1 повышается. Последнее связано с тем, что при замыкании выходной цепи генерация преобразователя может срываться, при этом ток нагрузки выпрямителя уменьшается, а его выходное напряжение увеличивается. В таких случаях стабилитрон VD2 ограничивает напряжение на выходе моста VD1.
Экспериментально снятая нагрузочная характеристика зарядного устройства изображена на рис.2. При увеличении тока нагрузки до 0,35. 0,4 А выходное напряжение изменяется незначительно, а при дальнейшем увеличении тока резко уменьшается. Если к выходу устройства подключить разряженную батарею аккумуляторов, напряжение на выходе моста VD1 уменьшается, стабилитрон VD2 выходит из режима стабилизации и, поскольку во входной цепи включен конденсатор С1 с большим реактивным сопротивлением, устройство работает в режиме источника тока.
Если зарядный ток уменьшился, то устройство плавно переходит в режим источника напряжения. Это дает возможность использовать зарядное устройство в качестве маломощного лабораторного блока питания. При токе нагрузки менее 0,3 А уровень пульсации на рабочей частоте преобразователя не превышает 16мВ, а выходное сопротивление источника уменьшается до нескольких Ом. Зависимость выходного сопротивления от тока нагрузки показана на рис.2.
Зарядное устройство легко размещается в коробку размерами 155х80х70 мм. Коробку следует изготовлять из изоляционного материала.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К40х25х11 из феррита 1500НМ1. Первичная обмотка содержит 2х160 витков провода ПЭВ-2 0,49, вторичная — 72 витка провода ПЭВ-2 0,8. Обмотки изолированы между собой двумя слоями лакоткани.
Стабилитрон VD2 установлен на теплоотводе с полезной площадью 25 см 2 . Транзисторы преобразователя в дополнительных теплоотводах не нуждаются, так как работают в ключевом режиме. Конденсатор С1 — бумажный, рассчитанный на номинальное напряжение не менее 400 В.
При необходимости использования з арядного устройства для зарядки малогабаритных аккумуляторов емкостью до единиц ампер-часов и регенерации гальванических элементов целесообразно обеспечить регулировку тока зарядки. Для этого вместо одного конденсатора С1 следует предусмотреть набор конденсаторов меньшей емкости, коммутируемых переключателем. С достаточной для практики точностью максимальный ток зарядки — ток замыкания выходной цели — пропорционален емкости балластного конденсатора (при 4 мкФ ток равен 0,46 А).
Если нужно уменьшить выходное напряжение лабораторного источника питания, достаточно стабилитрон VD2 заменить другим, с меньшим напряжением стабилизации.
Налаживать з арядное устройство начинают с проверки правильности монтажа. Затем убеждаются в работоспособности устройства при замыкании выходной цепи. Ток замыкания должен быть не менее 0,45. 0,46 А. В противном случае следует подобрать резисторы Rl, R2 с целью обеспечения надежного насыщения транзисторов VT1, VT2. Больший ток замыкания соответствует меньшему сопротивлению резисторов.

Читайте так же:
Регулировка стеклопакетов оконные стеклопакеты

Рис. 2 . Зарядное устройство для автомобильных аккумуляторов . Вольт-амперная диаграмма

Зарядное устройство — это очень просто

В настоящее время все более широкое применение в различных конструкциях в качестве элементов питания находят аккумуляторы НКГЦ-0,45, Д-0,26 и другие. Приведенное на рис.1 бестрансформаторное зарядное устройство позволяет заряжать одновременно четыре аккумулятора Д-0,26 током 26 мА в течение 12. 16 часов.

Бестрансформаторное зарядное устройство
Рис.1

Избыточное напряжение сети 220 В гасится за счет реактивного сопротивления конденсаторов (Хс) на частоте 50 Гц, что позволяет уменьшить габариты зарядного устройства.

Используя эту электрическую схему и зная рекомендуемый для конкретного типа аккумуляторов ток заряда (1з), по приводимым ниже формулам можно определить емкость конденсаторов С1, С2 (суммарную С=С1+С2) и выбрать по справочнику тип стабилитрона VD2 так, чтобы напряжение его стабилизации превышало напряжение заряженных аккумуляторов примерно на 0,7 В.

Тип стабилитрона зависит только от количества одновременно заряжаемых аккумуляторов, так, например, для заряда трех элементов Д-0,26 или НКГЦ-0,45 необходимо применять стабилитрон VD2 типа КС456А. Пример расчета приведен для аккумуляторов Д-0,26 с зарядным током 26 мА.

5b-3.jpg

В зарядном устройстве применяются резисторы типа МЛТ или С2-23, конденсаторы С1 и С2 типа К73-17В на рабочее напряжение 400 В. Резистор R1 может иметь номинал 330. 620 кОм (он обеспечивает разряд конденсаторов после отключения устройства).

Светодиод HL1 можно использовать любой, при этом подобрав резистор R3 так, чтобы он светился достаточно ярко. Диодная матрица VD1 заменяется четырьмя диодами КД102А.

Топология печатной платы с расположением элементов
Рис. 2

Топология печатной платы с расположением элементов показана на рис. 2. Плата односторонняя (без отверстий), и элементы устанавливаются со стороны печатных проводников.

При использовании элементов, указанных на схеме, зарядное устройство легко устанавливается в корпусе от блоков питания для карманных микрокалькуляторов (рис. 3) или же может размещаться внутри корпуса устройства, где установлены аккумуляторы.

Корпус зарядного устройства
Рис. 3. Корпус зарядного устройства

Индикация наличия напряжения в цепи заряда осуществляется светодиодом HL1, который размещается на видном месте корпуса. Диод VD3 позволяет предохранить разряд аккумуляторов через цепи зарядного устройства при отключении его от сети 220 В. При заряде аккумуляторов НКГЦ-0,45 током 45 мА резистор R3 необходимо уменьшить до величины, при которой светодиод светится полной яркостью.

Проверку зарядного устройства лучше проводить при подключении вместо аккумуляторов измерительных приборов и эквивалентной нагрузки (рис. 4), минимальная величина которой для четырех аккумуляторов определяется по закону Ома:

R = U/I = 4/0,026 =150 Ом, где

U — напряжение на разряженных аккумуляторах (у основной массы аккумуляторов эта величина составляет один вольт на элемент).

Эквивалентная нагрузка для настройки зарядного устройства
Рис. 4. Эквивалентная нагрузка для настройки зарядного устройства

При пользовании зарядным устройством необходимо следить за временем, так как приведенная схема хотя и снижает вероятность получения аккумулятором избыточного заряда (за счет ограничения напряжения стабилитроном), однако полностью такой возможности, при очень большом времени заряда, не исключает. А если у вас нет проблем с памятью, то это простое и малогабаритное устройство поможет сэкономить деньги.

Вторая схема бестрансформаторного зарядного устройства (рис. 5) предназначена для одновременного заряда двух аккумуляторов типа НКГЦ-0,45 (НКГЦ-0,5). Здесь обеспечивается асимметричный режим заряда, что позволяет продлить срок службы аккумуляторов. Заряд производится током 40. 45 мА в течение одной полуволны сетевого напряжения. В течение второй полуволны, когда соответствующий диод закрыт, элемент G1 (G2) разряжается через резистор R4 (R5) током 4,5 мА.

/pitanie/5-13.jpg
Рис. 5

Заряд аккумуляторов G1 и G2 происходит поочередно, так, например, в течение положительной полуволны заряжается G1 (G2 — разряжается). Такое построение схемы позволяет осуществлять процесс заряда аккумуляторов в независимости друг от друга, и любая неисправность одного из них не нарушит заряд другого.

Для индикации наличия сетевого напряжения в схеме используется миниатюрная лампа HL1 типа СМН6.3-20 или аналогичная. Аккумуляторы нельзя оставлять подключенными к схеме надолго без включения зарядного устройства в сеть, так как при этом происходит их разряд через резисторы R4, R5.

При правильной сборке устройства настройка не требуется.

Электрическая схема блока питания с автоматическим зарядным устройством
Рис. 6. Электрическая схема блока питания с автоматическим зарядным устройством

Схема, показанная на рис. 6, в отличие от вышеприведенных, исключает повреждение аккумуляторов из-за получения ими избыточного заряда. Она автоматически отключает процесс заряда при повышении напряжения на элементах выше допустимой величины и состоит из стабилизатора тока на транзисторе VT2, усилителя VT1, детектора уровня напряжения на VT3 и стабилизатора напряжения D1.

Устройство может использоваться и как источник питания на ток до 100 мА при подключении нагрузки к контактам 1 и 2 штекера Х2.

Индикатором процесса заряда является свечение светодиода HL1, который при его окончании гаснет.

Настройку устройства начинаем со стабилизатора тока. Для этого временно замыкаем базу транзистора VT3 на общий провод, а вместо аккумуляторов подключаем эквивалентную нагрузку с миллиамперметром 0. 100 мА. Контролируя прибором ток в нагрузке, подбором резистора R3 устанавливаем номинальный ток заряда для конкретного типа аккумуляторов.

Читайте так же:
Плавная регулировка скорости кулера

Вторым этапом настройки является установка уровня ограничения выходного напряжения с помощью подстроечного резистора R5. Для этого, контролируя напряжение на нагрузке, увеличиваем сопротивление нагрузки до момента появления максимально допустимого напряжения (5,8 В для четырех аккумуляторов Д-0,26). Резистором R5 добиваемся отключения тока в нагрузке (погаснет светодиод).

При изготовлении устройства можно использовать корпус от источника питания БП2-3 или аналогичный (от него же удобно взять и трансформатор). Трансформатор подойдет любой малогабаритный с напряжением во вторичной обмотке 12. 16 В.

Транзистор VT2 крепится к теплорассеивающей пластине. Конденсаторы С1 применяются типа К50-16-25В, С2—типа К50-16-16В. Для удобства настройки в качестве R5 желательно использовать многооборотный резистор типа СП5-2 или аналогичный, остальные резисторы подойдут любого типа.

От источника питания можно получить напряжения 6 или 9 В, если на место микросхемы D1 установить соответственно КР142ЕН5Б (Г) или КР142ЕН8А (Г).

Зарядное устройство регулировкой конденсаторами

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности, режима зарядки гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят вполне определенным током, значение которого можно определить по формуле

I = 0,1Q — для кислотных аккумуляторных батарей

I = 0,25Q — для щелочных аккумуляторных батарей.

Здесь Q — паспортная электрическая емкость аккумуляторной батареи в ампер-часах, I — средний зарядный ток в амперах.

Установлено, что зарядка чрезмерно большим током приводит к деформации пластин аккумуляторов и даже разрушению их; зарядка малым током вызывает сульфатацию пластин и снижение емкости аккумуляторной батареи. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени. Степень заряженйости аккумуляторной батареи можно контролировать как по значению плотности электролита и напряжению (для кислотных), так и по напряжению (для щелочных) на полюсных выводах.

Окончание зарядки кислотной аккумуляторной батареи определяют по следующим признакам: напряжение на каждом аккумуляторе батареи достигает 2,5. 2,6 В; плотность электролита достигает определенног.о значения и больше не изменяется; происходит обильное газовыделение — электролит «кипит»; электрическая емкость, сообщенная батарее, на 15. 20% больше емкости, отданной в процессе разрядки.

Кислотные аккумуляторные батареи чувствительны к недозарядкам и перезарядкам, поэтому своевременно надо заканчивать их зарядку.

Щелочные аккумуляторные батареи менее критичны к режиму эксплуатации. Для них окончание зарядки характеризуется установлением на каждом аккумуляторе постоянного,напряжения 1,6. 1,7 В и сообщением батарее 150. 160% емкости, отданной ею в процессе разрядки.

Зарядное устройство обычно состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока обычно используют проволочные реостаты и транзисторные стабилизаторы тока. В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 39. В нем тепловая (активная) мощность выделяется лишь на диодах V1 — V4 выпрямительного моста и в трансформаторе, поэтому нагрев устройства незначителен. Ток зарядкй аккумуляторной батареи GB1 поддерживается на определенном уровне. В процессе зарядки напряжение на батарее увеличивается, а ток, текущий через нее, стремится уменьшиться.

Рис. 39. Упрощенная схема зарядного устройства

Но при этом возрастает приведенное сопротивление первичной обмотки трансформатора Т1, напряжение на ней увеличивается, в результате чего ток через батарею GB1 меняется незначительно.

Как показывают расчеты, наибольшее значение тока через аккумуляторную батарею при заданной емкости конденсатора С1 будет при равенстве падений напряжения на этом конденсаторе и первичной обмотке трансформатора. Первичную обмотку рассчитывают на полное напряжение сети — для большей надежности устройства и применения готовых понижающих трансформаторов. Вторичную обмотку рассчитывают на напряжение в полтора раза большее, чем номинальное напряжение нагрузки.

Рис. 40 Схема зарядного устройства

В соответствии с этими рекомендациями и расчетами было собрано устройство, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 Ач причем ток зарядки можно изменять от 1 А до 15 А ступенями через 1 А. Предусмотрена возможность автоматическрго выключения устройства, когда батарея полностью зарядится. Устройство не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Его схема приведена на рис. 40. Магазин конденсаторов состоит из конденсаторов C1—С4, суммарная емкость которых составляет 37,5 мкФ. Тумблерами S2 — S5 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки. Например, для тока зарядки, равного 11 А, необходимо замкнуть контакты тумблеров S2, S3 и S5.

Как работает устройство? Допустим, что к зажимам Х2 и Х3 подключена аккумуляторная батарея и тумблерами S2 — S5 установлен требуемый зарядный ток. В этом случае при нажатии кнопки S1 «Пуск» сработает реле К1, контактами К1.1 оно заблокирует кнопку S1, а контактами К1.2 подключит к заряжаемой батарее цепь автоматического отключения устройства. Контакты K1.2 необходимы для того, чтобы батарея не разряжалась после отключения устройства от сети через диод V6 и резисторы R3—R5. Переменным резистором R4 устанавливают порог срабатывания реле К2 (оно должно срабатывать при напряжении на гнездах Х2 и Х3, равном напряжению полностью заряженной батареи). Когда напряжение батареи достигнет заданного значения, то откроются стабилитрон V10 и транзистор V9. При этом сработает реле К2, которое контактами К2.1 обесточит обмотку реле К1, а оно, отпуская, контактами К1.1 разорвет цепь питания устройства.

Читайте так же:
Регулировка пластиковых окон ханты мансийск

При нарушении контакта в цепи нагрузки напряжение на гнездах Х2 и Х3 резко возрастет, отчего также сработает реле К2 и отключит устройство от сети.

Аварийное отключение устройства происходит при любом положении движка переменного резистора R4. Но такие случаи нежелательны, так как в течение времени срабатывания реле К2 и отпускания реле К1 конденсаторы С1—С4 будут находиться под повышенным напряжением. Поэтому зарядное устройство следует включать в сеть лишь после того, как аккумуляторная батарея подсоединена к выходным гнездам. При коротком замыкании в цепи нагрузки ток через гнезда Х2 и Х3 увеличивается незначительно и для устройства это не страшно.

Все постоянные резисторы устройства типа МЛТ-0,5; переменный резистор R4 — СП-1. Вместо транзистора КТ801А (V8) можно применить КТ602, КТ603, П702 с любыми буквенными индексами, вместо транзистора МП38А (V9) — КТ315, КТ312, КТ601—КТ603 с любыми буквами. Измерительные приборы РА1 и PU1 — типа М5-2, рассчитанные соответственно на ток 30 А и напряжение 30 В. Реле К1 типа РС-13 (паспорт РС4.523.029), его контакты К1.1 — параллельно соединенные три группы контактов. Возможно применение реле типа МКУ-48, рассчитанного на переменное напряжение 220 В. В этом случае надобность в диоде V1 и конденсаторе С5 отпадает. Реле К2 типа РЭС-22 (паспорт РФ4.500.129). Диоды Д305 двухполупериодного выпрямителя установлены на радиаторе с поверхностью охлаждения 300 см2; от радиатора они электрически изолированы слюдяными прокладками. Радиатор крепится к шасси из дюралюминия, которое является как бы продолжением радиатора.

Вместо диодов Д305 можно применить Д214, Д242, но в этом случае в три-четыре раза возрастет тепловая мощность, рассеиваемая на них, поэтому размеры радиатора придется увеличить. Конденсаторы C1 — С4 составлены из параллельно соединенных конденсаторов КБГ-МН, МБГЧ, МБГО, МБГП, МБМ соответствующих емкостей. Номинальное напряжение конденсаторов КБГ-МН и МБГЧ, рассчитанных на работу в цепях переменного тока, должно быть не менее 300 В, всех других типов конденсаторов — не менее 600 В. Конденсаторы С5—С7 типа К50-3, ЭГЦ. Тумблеры S2—S5 типа Т1 В2-1-2 или ТП1-2.

Сетевой трансформатор Т1 выполнен на магнитопроводе Ш32Х70. Обмотка I содержит 490 витков провода ПЭВ-1 0,72, обмотка II — 52 витка провода ПЭВ-1 2,46. Вторичную обмотку можно выполнять несколькими проводами меньшего диаметра, сложенными вместе.

В качестве корпуса зарядного устройства можно использовать металлическую коробку размерами 360X220X220 мм, просверлив в ее стенках отверстия для свободной циркуляции воздуха.

Налаживание смонтированного устройства сводится к подбору шунта амперметра РА1 на ток 30 А и подбору емкостей конденсаторов C1 — С4, обеспечивающих требуемые зарядные токи.

При зарядке 12-вольтовых аккумуляторных батарей током 15 А КПД устройства достигает 75%, а температура внутри корпуса после 10 ч непрерывной работы не поднимается выше 40° С.

Такое устройство можно применять и для зарядки аккумуляторных батарей с меньшим напряжением, чем 12 В, например мотоциклетных. Но тогда надписи возле тумблеров S2 — S5 не будут соответствовать фактическим значениям зарядных токов. Зарядный же ток в этом случае не должен превышать 15 А.

Можно ли ввести в устройство измеритель сообщенного аккумуляторной батарее заряда? Можно. Принцип работы такого измерителя может быть основан на зарядке конденсатора током, пропорциональным зарядному току батареи. Счетчик заряда может быть стрелочным или цифровым. При цифровом отсчете несложно обеспечить — автоматическое отключение устройства от сети при сообщении батарее заданного заряда.

Автоматическое зарядное устройство для аккумуляторов.

Устройство обеспечивает стабильный ток заряда, автоматически отключается при достижении заданного напряжения на аккумуляторе. Схема работает так:

В течение нескольких секунд на аккумулятор подаётся зарядный ток, затем он автоматически отключается, примерно на 1 сек и производится замер ЭДС на аккумуляторе.

Как правило ЭДС полностью заряженного никель — кадмиевого аккумулятора составляет 1,35 V — если на аккумуляторе достигнута эта величина, переключается компаратор и срабатывает RS триггер, отключающий зарядный ток и включающий светодиод » Аккумулятор заряжен «.

Зарядное устройство позволяет заряжать аккумуляторные батареи с максимальным напряжением до 18 V . Ток зарядки регулируется переменным резистором в пределах 10 — 200 мА, а требуемое значение ЭДС аккумуляторной батареи, при которой зарядка прекращается также устанавливается переменным резистором.

Во время протекания зарядного тока периодически мигает светодиод » Заряд «.

Выходной транзистор необходимо установить на небольшой радиатор, площадь которого зависит от величины требуемого тока заряда и напряжения аккумуляторной батареи.

На ось переменных резисторов желательно насадить ручки с указателями, и с помощью мультиметра произвести калибровку с нанесением рисок на лицевой панели устройства.

Читайте так же:
Регулировка оконных систем монблан

Простое автоматическое зарядное устройство.

Малогабаритное автоматическое зарядное устройство (АЗУ), предназначено для зарядки аккумуляторных батарей напряжением 12 вольт.
Устройство рассчитано на непрерывную круглосуточную работу с питанием от сети напряжением 220V, зарядка осуществляется малым импульсным током (0.1-0.15 А).
При правильном подключении аккумулятора должен загореться зеленый индикатор устройства. Отсутствие свечения зеленого светодиода говорит о полном заряде аккумуляторной батареи или об обрыве линии. При этом загорается красный индикатор устройства (светодиод).

В устройстве предусмотрена защита от:
• Короткого замыкания в линии;
• Короткого замыкания в самом аккумуляторе.
• Неправильного подключения полярности аккумулятора;

Наладка заключается в подборе сопротивлений R2(1.8к) и R4(1.2к) при напряжении на аккумуляторе 14,4V до исчезновения свечения зеленого светодиода.
* Источник: http://cxema.my1.ru/

Устройство для заряда аккумуляторов сотовых телефонов.

На рисунке представлена схема устройства для заряда сотовых телефонов на никель-металлогидридных (Ni-MH) и литиевых (Li-ion) аккумуляторах номинальным напряжением 3,6—3,8V с индикацией состояния и автоматической регулировкой выходного тока.

Схема зарядного устройства с индикацией и автоматической регулировкой выходного тока

Для изменения значений выходного тока и напряжения, необходимо изменить номиналы элементов VD4, R5, R6.

Первоначальный ток зарядного устройства 100 мА, это значение определяет­ся выходным напряжением вторичной обмотки трансформатора Тр1 и величиной сопротивления резистора R2. Оба эти параметра можно корректировать, подбирая понижающий трансформатор или сопротивление ограничивающего резистора.
Напряжение сети 220V понижается трансформатором Тр1 до 10V на вторичной обмотке, затем выпрямляется диодным мостом VD1 и сглаживается конденсатором С1. Выпрямленное напряжение через токоограничивающий резистор R2 и усилитель тока на транзисторах VT2, VT3 поступает через разъем XI на аккумулятор сотового телефона и заряжает его минимальным током. При этом свечение светодиода HL1 свидетельствует о наличии зарядного тока в цепи. Если данный светодиод не светится, то это значит, что аккумулятор заряжен полностью, или в цепи зарядки нет контакта с нагрузкой (аккумулятором).
Свечение второго индикаторного светодиода HL2 в самом начале процесса зарядки не заметно, т. к. напряжения на выходе зарядного устройства недостаточно для открывания транзисторного ключа VT1. В это же самое время составной транзистор VT2, VT3 находится в режиме насыщения, и зарядный ток присутствует в цепи (протекает через аккумулятор).
Когда напряжение на контактах аккумулятора достигнет значения 3,8V, что говорит о полностью заряженном аккумуляторе, стабилитрон VD2 открывается, транзистор VT1 также открывается и светодиод HL2 загорается, а транзисторы VT2, VT3 соответственно закрываются и зарядной ток в цепи питания аккумулятора (XI) уменьшается почти до нуля.

Налаживание.
Налаживание сводится к установке максимального зарядного тока и напряжения на выходе устройства, при котором светится светодиод HL2.
Для этого потребуются два однотипных аккумулятора для сотового телефона с номинальным напряже­нием 3,6—3,8V. Один аккумулятор полностью разряженный, а другой соответственно полностью заряженный штатным зарядным устройством.
Максимальный ток устанавливается опытным путем:
К выходу зарядного устройства (точки А и Б, разъема XI) через включенный последовательно миллиамперметр постоянного тока подключают заведомо разряженный сотовый телефон который после длительной эксплуатации выключился сам из-за разряженной аккумуляторной батареи, и подбором сопротивления резистора R2 выставляют ток 100 мА.
Для этой цели удобно использовать стрелочный миллиамерметр с током полного отклонения 100 мА, применять цифровой тестер нежелательно из-за инерции считывания и индикации показаний.
После этого (предварительно отключив зарядное устройство от сети переменного тока) эмиттер транзистора VT3 отпаивают от других элементов схе­мы и вместо «севшего» аккумулятора к точкам А и Б на схеме подключают нормально заряженный аккумулятор (для этого переставляют аккумуляторы в одном и том же телефоне). Теперь подбором сопротивления резисторов R5 и R6 добиваются зажигания светодиода HL2.
После этого эмиттер транзистора VT3 подключают обратно к другим элементам схемы.

О деталях
Трансформатор Тр1 любой, рассчитанный на питание от сети 220V 50 Гц и вторичной обмоткой, выдающей напряжение 10 — 12V.
Транзисторы VT1, VT2 типа КТ315Б — КТ315Е, КТ3102А — КТ3102Б, КТ503А — КТ503В, КТ3117А или аналогичные по электрическим характеристикам.
Транзистор VT3 — из серий КТ801, КТ815, КТ817, КТ819 с любым буквенным индексом. Необходимости в установке этого транзистора на теплоотвод нет.
Все постоянные резисторы (кроме R2) типа МЛТ-0,25, MF-25 или аналогичные, R2 — мощностью 1 Вт.
Оксидный конденсатор С1 типа К50-24, К50-29 или аналогичный на рабочее напряжение не ниже 25V.
Светодиоды HL1, HL2 типа АЛ307БМ или другие (для индикации состояния различными цветами), рассчитанные на ток 5—12 мА.
Диодный мост VD1 — любой из серии КЦ402, КЦ405, КЦ407.
Стабилитрон VD2 определяет напряжение, при котором зарядной ток устройства уменьшится почти до нуля. В данном варианте необходим стабилитрон с напряжением стабилизации (открывания) 4,5—4,8V. Указанный на схеме стабилитрон можно заменить на КС447А или составить из двух стабилитронов на меньшее напряжение, включив их последовательно. Кроме того, порог автоматического отключения режима зарядки устройства можно корректировать изменением сопротивления делителя напряжения, состоящего из резисторов R5 и R6.

Кашкаров А. П. «Электронные самоделки» — Спб.: БХВ-Петербург, 2007, стр.32.

Читайте так же:
Регулировка рам деревянных окон

Простые схемы зарядных устройств.

Сейчас на рынке имеется множество сложных устройств, для зарядки аккумуляторов токами различной формы и амплитуды с системами контроля зарядного процесса, однако на практике эксперименты с различными схемами зарядных устройств подводят нас к простому выводу, что всё гораздо проще.

Зарядный ток 10% от ёмкости АКБ подходит как для NiCd, так и для Li-Ion аккумуляторов. И чтобы полностью зарядить аккумулятор, ему надо дать время зарядки около 10 — 12 часов.

Например, когда нам нужно зарядить пальчиковый аккумулятор на 2500 мА, нужно выбрать ток 2500/10 = 250 мА и заряжать им его в течении 12 часов.

Схемы нескольких таких зарядных устройств показаны ниже :

Устройство, не содержащее трансформатора изображенное на рис. 2, позволяет заряжать, как один аккумулятор, так и батарею из нескольких аккумуляторных элементов, зарядный ток при этом изменяется незначительно.


В качестве диодов D1 — D7 используются диоды КД105 или аналогичные. Светодиод D8 — АЛ307 или подобный, желаемого цвета свечения. Диоды D1 — D4 могут быть заменены на диодную сборку. Резистором R3 подбирают необходимую яркость свечения светодиода. Емкость конденсатора С1, задающего необходимый зарядный ток рассчитывается по формуле:

C1= 3128/А,
А = V — R2,
V = (220 — Uедс) / J: Где: C1 в мкФ; Uедс — напряжение на аккумуляторной батарее в V ; J — необходимый зарядный ток в А.

Например, рассчитаем емкость конденсатора для зарядки батареи из 8 аккумуляторов емкостью 700mAh.

Зарядный ток (J) будет составлять 0.1 емкости аккумулятора — 0.07А, Uедс 1.2 х 8 =9.6 V .

Следовательно, V = (220 — 9.6) / 0.07 = 3005.7, далее А = 3005.7 — 200 = 2805.7.

Емкость конденсатора составит С1 = 3128 / 2805.7 = 1.115 мкФ, ближайший номинал — 1мкФ.

Рабочее напряжение конденсатора должно быть не менее 400 V . Рассеиваемая мощность резистора R2 определяется величиной зарядного тока. Для зарядного тока 0.07А она будет 0.98 Вт (P= JxJxR). Выбираем резистор с рассеиваемой мощностью 2 Вт.

Зарядное устройство не боится коротких замыканий. После сборки зарядного устройства можно проверить зарядный ток, подключив вместо аккумуляторной батареи амперметр.

Если аккумуляторная батарея подключена с нарушением полярности, то еще до включения зарядного устройства в электрическую сеть светодиод D8 будет светиться.

После подключения устройства к электрической сети светодиод сигнализирует о прохождении зарядного тока через аккумуляторную батарею.

Показанное на рис. 3 устройство позволяет заряжать одновременно четыре аккумулятора Д-0,26 током 26 мА в течение 12. 14 часов.

Избыточное напряжение сети 220 V гасится за счет реактивного сопротивления конденсаторов (Хс).

Используя эту электрическую схему и зная рекомендуемый для конкретного типа аккумуляторов ток заряда ( I з), по приводимым ниже формулам можно определить емкость конденсаторов С1, С2 (суммарно С=С1+С2) и выбрать тип стабилитрона VD2 так, чтобы напряжение его стабилизации превышало напряжение заряженных аккумуляторов примерно на 0,7 V .

Тип стабилитрона зависит только от количества одновременно заряжаемых аккумуляторов, так, например, для заряда трех элементов Д-0,26 или НКГЦ-0,45 необходимо применять стабилитрон VD2 типа КС456А. Пример расчета приведен для аккумуляторов Д-0,26 с зарядным током 26мА.

В зарядном устройстве применяются резисторы типа МЛТ или С2-23, конденсаторы С1 и С2 типа К73-17В на рабочее напряжение 400 V . Резистор R1 может иметь номинал 330. 620 кОм, он обеспечивает разряд конденсаторов после отключения устройства.

Светодиод HL1 можно использовать любой, при этом подобрав резистор R3 так, чтобы он светился достаточно ярко. Диодная матрица VD1 заменяется четырьмя диодами КД102А.

Индикация наличия напряжения в цепи заряда осуществляется светодиодом HL1, диод VD3 позволяет предотвратить разряд аккумулятора через цепи зарядного устройства при отключении его от сети 220 V .

При заряде аккумуляторов НКГЦ-0,45 током 45мА резистор R3 необходимо уменьшить до величины, при которой светодиод светится полной яркостью.

Схема зарядного устройства (рис. 4) предназначена для заряда аккумуляторов типа НКГЦ-0,45 (НКГЦ-0,5). Заряд производится током 40. 45 мА в течение одной полуволны сетевого напряжения, в течение второй полуволны, диод закрыт и на элемент G1 зарядный ток не поступает.

Для индикации наличия сетевого напряжения используется миниатюрная лампа HL1 типа СМН6.3-20 или аналогичная.

При правильной сборке устройств настройка не требуется. Емкость конденсатора считаем по формуле: С1 (в мкФ)= 14.8* ток зарядки (в А)

Если нужен ток 2А, то 14.8*2=29.6 мкФ. Берем конденсатор эмкостью 30мкФ и получаем ток заряда 2 Ампера. Резистор, для разряда конденсатора.

Схема зарядного устройства, приведенная на следующем рисунке, представляет собой простейший стабилизатор тока. Зарядный ток регулируется с помощью переменного резистора в пределах от 10 до 500 мА.

В устройстве можно применить любые диоды способные выдержать зарядный ток.

Напряжение питания должно быть на 30% больше максимального напряжения заряжаемой батареи.

Так как все приведенные схемы НЕ исключают возможность получения аккумулятором избыточного заряда, при использовании таких устройств необходимо контролировать время заряда, которое не должно превышать 12 часов.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector