0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Зарядное устройство для автомобильного аккумулятора своими руками

Зарядное устройство для автомобильного аккумулятора своими руками

Как часто автовладельцы не могут завести четырехколесного любимца из-за отсутствия заряда в аккумуляторе? Конечно, если этот казус приключился в гараже возле зарядного агрегата или поблизости есть друг с автомобилем, готовый помочь запустить стартер, особых проблем не предвидится.

Куда хуже обстоят дела, если ни первый, ни второй вариант вы реализовать не можете, особенно от этого страдают автомобилисты, не имеющие возможности приобрести дорогостоящее зарядное заводского производства. Но и в этом случае можно найти решение, если сделать зарядное устройство для автомобильного аккумулятора своими руками.

Преимущества и недостатки самодельного устройства

Главным преимуществом самодельного зарядного устройства является его дешевизна, даже если вы не имеете всех необходимых деталей, экономия будет ощутимой. Также значительным плюсом является возможность использования ненужных приборов и устройств в качестве источника материалов для самодельного ЗУ.

К недостаткам самодельной зарядки аккумуляторов следует отнести несовершенство в эксплуатации. Увы, но модель не может самостоятельно отключаться при достижении максимального заряда, поэтому вам придется контролировать этот процесс или дополнить изобретение самодельной автоматикой, что под силу опытным радиолюбителям.

Параметры устройства

Как вам хорошо известно, вся сеть в авто питается низким напряжением 12В постоянного тока, но уровень зарядки автомобильного аккумулятора должен находиться в диапазоне от 13 до 15В. Ток заряда на выходе устройства должен составлять порядка 10% от емкости источника питания. Если ток окажется меньше, заряд все равно будет происходить, но процедура продлиться гораздо дольше. Поэтому выбор элементов для зарядного устройства должен отталкиваться от рабочих параметров конкретной модели свинцовых АКБ и сети, к которой оно будет подключаться.

Что нужно для ЗУ?

Конструктивно зарядное устройство включает в себя такие элементы:

Измерение с помощью мультиметра

  • Главным элементом является двухобмоточный трансформатор, если у вас имеется агрегат с большим числом обмоток, можно использовать и его, но остальные катушки окажутся незадействованными. Помимо классических вполне подойдут и импульсные трансформаторы, взятые из китайской электроники.
  • Так как напряжение на выходе из трансформатора получится переменным, а для подзарядки аккумулятора требуется постоянное, вам понадобится выпрямитель. В данном примере мы соберем его самостоятельно из четырех диодов, но если у вас имеется подходящая модель, можете установить ее.
  • В зависимости от расстояния и величины вторичного напряжения, вам могут пригодиться соединительные провода, а для самостоятельной намотки еще и медный проводник в лаковой изоляции.
  • Амперметр и вольтметр для контроля основных величин на выходе, их можно проверять и обычным мультиметром, но это потребует излишних затрат времени, поэтому куда проще установить стационарные приборы. Рис. 1: измерение с помощью мультиметра
  • Автоматика отключения может выполняться посредством реле напряжения или тока. Реагирует на заполнение емкости батареи и отключает автоматическое ЗУ. Вместе с реле можно установить автомобильную лампочку или светодиод для регистрации окончания заряда.
  • Переменный резистор или переключатель для регулировки тока во вторичной цепи зарядного агрегата. Необходим, если вы собираетесь использовать зарядное устройство для аккумуляторов разного типа или если вам сложно рассчитать рабочие параметры и их придется подстраивать.

Если вы собираетесь зарядить аккумулятор одни раз, можно использовать только первые три элемента, для постоянного использования будет удобнее иметь, хотя бы контрольные приборы. Но, прежде чем собрать все это в единую конструкцию, вам необходимо убедиться, что параметры зарядного устройства после сборки будут соответствовать вашим потребностям. Первым, что должно соответствовать, является трансформатор зарядного приспособления.

Если трансформатор не подходит

Далеко не всегда в гараже или дома вы встретите именно такой трансформатор, который будет питаться от 220В и выдавать на выходных клеммах 13 – 15В. Большинство моделей, используемых в обиходе, действительно имеют первичную катушку на 220В, но на выходе может быть любой номинал. Чтобы это исправить вам потребуется изготовить новую вторичку.

Для начала пересчитайте коэффициент трансформации по формуле: U1/U2 = N1/N2 ,

где U1 и U2 – напряжение на первичной и вторичной обмотке соответственно;

N1 и N2 – количество витков в первичке и вторичке соответственно.

К примеру, электрическая машина используется в качестве блока питания на 42В, а вы хотите получить для зарядного устройства 14В. Следовательно, вам необходимо при 480 витках в первичке, сделать 31 виток на вторичке зарядного. Этого можно добиться как путем сокращения числа витков, удалив лишние, так и путем намотки новой. Но первый вариант не всегда подходит, так как сечение обмотки трансформатора может не выдержать силу тока с меньшим числом витков.

Читайте так же:
Регулировка тепла в квартире с индивидуальным учетом

Где U1 и U2 – напряжение на первичной и вторичной обмотке, I 1 и I 2 – ток, протекающий в первичке и вторичке.

Как видите, с понижением числа витков и напряжения на вторичной обмотке сила тока в ней пропорционально возрастет. Как правило, запаса по сечению не хватает, поэтому после определения силы тока под нее подбирают новый проводник из данных таблицы:

Таблица: выбор сечения, в зависимости от протекающего тока

Если расчетная величина тока на выходе зарядного устройства превышает нужные 10% от емкости аккумулятора, в цепь обязательно включается токоограничивающий резистор, величина которого подбирается пропорционально излишку тока.

Порядок сборки зарядного устройства для автомобильного аккумулятора

В зависимости от имеющихся у вас компонентов и параметров аккумулятора, сборка ЗУ будет значительно отличаться. В данном примере технология изготовления включает в себя такие этапы:

  • Составьте или возьмите готовую схему зарядного устройства для кислотных аккумуляторов. В данном примере используется такой довольно простой вариант: Схема зарядного устройства Рис. 3: схема зарядного устройства
  • Здесь применяется трансформатор с двумя первичными и двумя вторичными обмотками, которые нужно соединить последовательно для получения нужного уровня напряжения. Трансформатор ТС - 180 - 2 Рис. 4: Трансформатор ТС — 180 — 2

Но вы должны отталкиваться от параметров вашей электрической машины. Поэтому при необходимости уберите лишние обмотки или заизолируйте их выводы (если они есть), намотайте вторичку (если существующая не дает нужный уровень напряжения в ЗУ).

Соедините выводы 1

  • В рассматриваемом примере для этого на первичных обмотках соединяются перемычкой выводы 1 и 1′ Рис. 6: соедините выводы 1

а на вторичной выводы 9 и 9′.

  • К клеммам 2 и 2′ припаяйте выводы сетевого шнура. Подключите сетевой шнур Рис. 8: подключите сетевой шнур
  • Соберите диодную сборку на текстолитовой пластине, как показано на схеме. В связи с интенсивным выделением тепла из-за больших зарядных токов, полупроводниковые приборы устанавливаются на радиатор. Диодная сборка Рис. 9: диодная сборка
  • Подключите мост к выводам 12В, в данном примере это клеммы 10 и 10′. Основные элементы зарядного устройства собраны. Подключите выводы 10 к диодному мосту Рис. 10: подключите выводы 10 к диодному мосту
  • Между выводом диодного моста и клеммами АКБ установите амперметр с пределом измерения до 15 А. Подключите амперметр Рис. 11: подключите амперметр
  • В цепь амперметра подключите токоограничивающий блок резисторов или переключатель с функцией регулировки сопротивления, они позволят изменять величину тока зарядного устройства. Установите переключатель Рис. 12: установите переключатель
  • Между выводами для подключения АКБ установите вольтметр для контроля величины напряжения с пределом измерений в 15 или 20 В. Подключите вольтметр Рис. 13: подключите вольтметр

Для защиты зарядного устройства, как со стороны сети, так и со стороны свинцовой батареи нужно установить два предохранителя. В рассматриваемом примере с высокой стороны зарядного устройства применяется предохранитель на 0,5А, а в цепи зарядки свинцового аккумулятора 10А.

При наличии регулятора тока зарядного устройства, начинать зарядку следует с минимального значения на амперметре и плавно повышать его до требуемой величины. При накоплении в аккумуляторе достаточного количества заряда, амперметр будет показывать около 1А, после чего можете смело отключать зарядное от сети и использовать аккумулятор по назначению.

Зависимость величин от времени заряда

Рис. 14: зависимость величин от времени заряда

Зарядное устройство регулировка по первичной обмотке трансформатора

Решил написать свой способ как собрать зарядное устройство для аккумулятора.
Сразу скажу, что зарядное работает исключительно в ручном режиме и ни сколько не портит аккумулятор, если следить за напряжением и током.

Для сборки нам понадобится:
— трансформатор 220/16 160Вт, то бишь на вторичной обмотке должно быть не менее 16 вольт без нагрузки и 10А максимальный ток. Ток можно меньше (т.к. аккумулятор заряжается 0,1 от номинального тока, то на аккумулятор 60А/ч потребуется ток 6А)
— диммер для электрического освещения квартиры или настольной лампы. Лишь бы мощность подошла. Лично я выбрал такой:

— диодный мост. Можно использовать диодный мост с генератора любого авто, а можно купить 4 диода, рассчитанные на нужный ток, на радиорынке и собрать их по схеме:

— вольтамперметр. Самый простой способ по-моему. Можно заказать прибор на АлиЭкспресс тут. Выглядит он так:

Читайте так же:
Регулировка арматуры кнопочных унитазов

Всё в одном корпусе — вольтметр и амперметр. Напряжение питания прибора — 4,5 — 30В, измеряет ток до 10А.
Либо можно поставить два стрелочных или цифровых прибора, вольтметр и амперметр соответственно.

— корпус, конденсатор хотя бы на 2200мкФ * 25В, выключатель, предохранитель по 220В, предохранитель по 16В.

Зарядное устройство — это по сути мощный блок питания, имеющий вход 220В, а выход регулируется от

0 до нужного нам тока и напряжения.
Как же мы будем регулировать этот самый ток, ведь он достаточно велик. Некоторые БП строятся на тиристорных или симисторных регуляторах (а так же на полевиках) регулируя вторичный ток. Следовательно эти зарядные устройства дорогие, т.к. мощные тиристоры и так дорогие, дак к ним еще необходимо собрать схему управления.
Так же часто применяют зарядные на базе импульсных преобразователей напряжения. Тоже не дешёвый и не самый простой вариант.
Я же предлагаю регулировать первичный ток на трансформаторе посредством готового регулятора напряжения (диммер). А ток на вторичной обмотке напрямую зависит от тока на первичной обмотке. Только зная закон Ома ток в первичной обмотке будет значительно отличаться от вторичного (будет гораздо меньше)
А для не большого тока нужны и детали меньше, а следовательно дешевле (по этому диммеры, хоть и построены на симисторе, стоят очень дёшего).

Принципиальная схема прибора:

Если в диммере есть выключатель, то на схеме выключатель SA не нужен. Так же необходимо на проводе или в корпусе установить предохранитель по 16В для защиты от короткого замыкания выхода.

Так же необходимо поверить и откалибровать прибор по образцовому (цешка (мультиметр) в помощь). Калибруется он с помощью двух регуляторов на задней части платы (VR — напряжение и IR — ток)

В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается.

Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов – зарядное устройство с регулировкой по первичной обмотке трансформатора.

Управление трансформатором по первичной обмотке

Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя. Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров.

Особенности регуляторов для первички трансформаторов

Ток зарядки батареи составляет 10% ее емкости. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А. Напряжение заряда при работе автомобиля 14,5В. Учитывая необходимый запас, зарядное устройства должно быть способно выдать 10А при напряжении 16В.

Запас напряжения необходим для регулировки и ограничения зарядного тока.

В разных моделях аппаратов она производится разными способами:

  • Добавочными сопротивлениями. Включаются после диодного моста. Самая простая конструкция, но имеющая самые большие размеры.
  • Транзисторами. Высокая точность регулировки, но самая сложная схема, требующая хорошего охлаждения силовых транзисторов.
  • Тиристорное управление. Простые схемы. Регулировка осуществляется тиристорным ключем в цепи первичной обмотки или тиристорами, установленными вместо диодов в выпрямительный мост.

Схема и назначение тиристорного регулятора напряжения для трансформатора

Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ – использование тиристорного регулятора.

Модели для зарядки аккумуляторов

Зарядные устройства делятся на три группы:

  • Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется – недостаточное напряжение и отсутствие регулировок.
  • Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
  • Пуско-зарядные. Могут выполнять обе функции.

Принцип действия тиристорного регулятора

Тиристор имеет два состояния – открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется “угол открытия”. В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.

Читайте так же:
Самостоятельная регулировка фурнитуру окон пвх

Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз. Для бытовой сети это 308В.

Разновидности и технические характеристики тиристорного регулятора

Из-за того, что тиристор пропускает через себя напряжение только одной полярности, его нелзя использовать для управления трансформатором без дополнительных элементов:

    Включить тиристор в диодный мост из 4 диодов на вывода “+” и “-“. Вывода “

” подключаются в разрыв цепи вместо выключателя или последовательно с ним. Диодный мост выпрямляет напряжение и на тиристор подается питание только одной полярности.

Открытие тиристора происходит при прохождении тока больше определенной величины и есть два способа управления углом открывания:

  • Переменным сопротивлением, включенным между анодом и управляющим электродом. В течении первой половины полуволны напряжение и ток управления растут и при достижении его определенной величины, зависящей от марки элемента. Недостаток этой схемы в ограниченном диапазоне регулировки 110-220В, но этого достаточно для управления трансформатором зарядного устройства.
  • Управление импульсами, которые подает отдельная схема на управляющий электрод в определенный момент полуволны синусоиды.
    Допустимый ток и напряжение тиристорного регулятора зависят в первую очередь от установленных тиристоров. Самые распространенные – тиристоры серии КУ 202, но в некоторых случаях допускается применение других элементов:
  • КУ 202Н – 400В, 30А. Крепятся на резьбе М6. При регулировке первичной обмотки, ток которой менее 1А, используются без радиаторов.
  • КУ 201л – 300В, 30А, крепление- резьба М6. Допускается использовать в первичной обмотке.
  • КУ 201а – 25В, 30А, крепление – резьба М6. Можно использовать только с радиаторами при регулировке после трансформатора.
  • КУ 101г – 80В, 1А. Похож на транзистор. В силовых цепях зарядных устройствах не используются, только в схемах управления.
  • КУ 104а – 6В, 3А. Так же в силовых цепях не применяются.

Что представляет собой симистор

У тиристора есть недостаток, усложняющий его применение в сети переменного тока – он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.

Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.

Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.

Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.

Совет! Для регулировки симистором можно использовать диммер от лампы накаливания. Для этого он включается между анодом и управляющим электродом силового симистора.

Другие простые варианты регулировки напряжения в первичке

Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:

  • Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
  • Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
  • Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.

Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.

.
Предлагаемая универсальная конструкция предназначена для зарядки кислотных 12-ти и 6-ти вольтовых аккумуляторов и в состоянии обеспечить зарядный ток до 5-6 А. Регулировка тока – плавная. В отличие от распространенных схем, в этой конструкции управляющий элемент (тиристор VS1) включен в цепь первичной обмотки, что значительно уменьшило рассеиваемую на нем мощность и позволило обойтись без установки тиристора на радиатор. Схема контроля, собранная на стрелочном приборе PA1, тоже достаточно экономична, поскольку не имеет мощного шунта, включаемого обычно во вторичную цепь. Взглянем на принципиальную схему зарядного устройства.

Читайте так же:
Как регулировать параметры дисплея

Поскольку в качестве управляющего элемента служит тиристор, который не может работать с переменным током, его пришлось включить в диагональ моста, собранного на диодах VD1 – VD4. Регулировка тока через первичную обмотку (а значит, и зарядного тока) производится изменением угла открывания тиристора — за этим следит узел управления, собранный на однопереходном транзисторе VT1.

При изменении сопротивления переменного резистора R6, изменяется и время зарядки конденсатора С1. Чем дольше заряжается конденсатор, тем позже откроется транзистор, а значит и тиристор, после начала периода сетевого напряжения. Таким образом, ток через первичную обмотку трансформатора Т1 можно плавно регулировать от 0 до практически 100%. Напряжение на вторичной обмотке трансформатора при этом будет изменяться от 0 до 18 — 20 В, что и вызовет изменение зарядного тока аккумулятора.

Контролируют величину зарядного тока косвенно, измеряя ток через первичную обмотку при помощи стрелочного прибора PA1, включенного через балластный резистор R2 и зашунтированного двухваттным резистором R1. Лампа HL1 является индикаторной.

В конструкции кроме указанных на схеме могут быть использованы диоды Д231 – Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Устанавливать на радиаторы их не нужно. В качестве VS1 будут работать тиристоры КУ201К,Л, КУ202К,Л,М,Н. Радиатор тиристору тоже не нужен. Во вторичной цепи (на месте VD5 – VD8) кроме указанных на схеме будут работать Д231 – Д233 без буквенного индекса или с буквой А. Их придется установить на радиаторы площадью поверхности не менее 30 см. кв. каждый, (если диоды германиевые – Д305), или 100 см. кв., если кремниевые.

Конденсатор С1 должен быть с минимальным температурным коэффициентом емкости, к примеру, типа К73-17, К73-24. В противном случае при прогреве устройства зарядный ток будет «уходить». В качестве Т1 подойдет любой сетевой трансформатор мощностью не менее 150 Вт, способный отдать со вторичной обмотки напряжение 18-20 В при токе до 6-7 А. Очень удобно для этих целей использовать типовые трансформаторы ТН или ТАН, характеристики которых можно посмотреть в нашем справочнике по трансформаторам. В качестве измерительного прибора PA1 можно использовать любой микроамперметр с током полного отклонения 100 мкА.

Регулировка устройства сводится к подбору номинала резистора R2 для калибровки прибора PA1 с одновременным контролем зарядного тока. Единственный, пожалуй, недостаток такого зарядного устройства – наличие сетевого напряжения на схеме управления, поэтому в целях безопасности на резистор R6 нужно надеть ручку из изоляционного материала.

А.Н. Евсеев «Электронные устройства для дома», 1994 г.

Внимание! Конструкция имеет бестрансформаторное питание, поэтому во время работы на всех ее элементах присутствует опасное для жизни напряжение. Перед любой перепайкой или изменением схемы обязательно отключайте конструкцию от сети!

Тиристорное зарядное устройство для автоаккумулятора

Вы можете опубликовать сообщение сейчас, а зарегистрироваться позже. Если у вас есть аккаунт, войдите в него для написания от своего имени.
Примечание: вашему сообщению потребуется утверждение модератора, прежде чем оно станет доступным.

Объявления

  • Прочитайте перед созданием темы!

Сообщения

минздрав

ummagumma

mikes357

KIIO

Жерар

каминщик


Острые кусачки

Похожие публикации

Приветствую уважаемые дамы и господа!
Занимаюсь разработкой носимого устройства с целью исследования технологий LoRaWAN и BLE 5.0. А также поработать с энергоэффективными режимами работы МК STM32L4-серии.
Исходные данные:

где — D3 микросхема зарядки Li-ionLi-Pol аккумулятора (MCP73831),
D4 — DCDC преобразователь USB -> 3.3V (LM3671),
D5 — DCDC преобразователь VBAT -> 3.3V (LM3671).

Суть моего вопроса:
Если присутствует напряжение VBUS (USB), то необходимо выключать преобразователь D5 сигналом LM3671_BAT, но включать D4 сигналом LM3671_USB.
Таким образом получается, что аккумулятор будет заряжаться, а питаться прибор будет от USB.

Мои предположения, рассуждения и решения которые я вижу:
Если управлять преобразователями при помощи GPIO портов МК, то получится, что как только питание по USB отключится, то прибор выключится быстрее, чем успеет включиться преобразователь работающий от VBAT, ввиду чего я такое решение и отмёл. Использовать небольшую схемку на двух полевых транзисторах в одном корпусе (p и n типа). В симуляторе вроде как всё работает, но вероятно может произойти та же ситуация, что и в случае 1;

Использовать микросхему выполняющую данную задачу, но тут играет роль, что достать её сложно, стоит 7$ и выглядит как overkill для такой простой задачи. Покидайтесь, пожалуйста, камнями и критикой решений, своими вариантами решения задачи или же исправлениями к приложенным схемам.
————————————————————————————————————————————————————————————-
Если вдруг кого-то заинтересует,
то вот ссылка на GitHub проекта,
а так же ссылка на GitHub библиотеки.
Используются шрифты T-Flex GOST, можно получить по ссылке.

Читайте так же:
Как регулируют напряжение на входе приемника рельсовой цепи

Здравствуйте господа, подскажите по какой схеме лучше соединить аккумуляторы. Аккумуляторы д-0.55с, нагрузка светодиодная матрица. В рамках вопроса интересует только работа на нагрузку (без схемы зарядки/

Нужна принципиальная схема устройства зарядного малогабаритного УЗМ 1,5-5

Простое зарядное устройство

Обычно подзарядка аккумулятора в транспортном средстве происходит во время работы генератора. Однако, при длительном простое автомобиля, на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя. И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора. Однако стоимость зарядного устройства сильно "бьёт" по карману, и поэтому я решил сам собрать зарядное устройство. Оно позволяет заряжать автомобильные аккумуляторные батареи током от 0 до 10А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы, устройства для резки пенопласта, автомобильного насоса-компрессора для подкачки колёс. Устройство не содержит дефицитных деталей и при исправных элементах не требует налаживания. Для данной схемы использован сетевой понижающий трансформатор ТС270-1(выдран из старого лампового телевизора) с напряжением вторичной обмотки 17В. Без внесения изменений подойдет любой с напряжением на вторичной обмотке от 17 до 22В. Корпус использован от блока управления станции катодной защиты газопровода КСС-600(охлаждение в корпусе естественное). В данном зарядном устройстве есть возможность, при возникшей необходимости, установить схему для зарядки малогабаритных аккумуляторов (типа Д-0.55С и др). При этом контроль зарядного тока осуществляется установленным миллиамперметром.
Принципиальная схема устройства показана на фото ниже.

Она представляет собой традиционный тринисторный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VD1-4. Узел управления тринистором выполнен на аналоге однопереходного транзистора VT1, VT2. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот. Диод VD5 защищает управляющую цепь тринистора от обратного напряжения, возникающего при включении тринистора VS1. Печатная плата устройства и монтажная плата на фото ниже.

Если у готового, используемого трансформатора на вторичной обмотке более 17В, резистор R5 следует заменить другим, большего сопротивления (например, при 24…26В до 200Ом). В случае, когда вторичная обмотка имеет отвод от середины, или есть две одинаковые обмотки и напряжение каждой находится в указанных пределах, то выпрямитель лучше выполнить по стандартной двухполупериодной схеме на двух диодах.
А при сборке выпрямителя точно по схеме подойдут следующие детали:
С1 — К73-11, емкостью от 0,47 до 1мкФ, а также К73-16, К42У-2, МБГП.
Диоды VD1 — VD4 могут быть любыми на прямой ток 10А и обратное напряжение не менее 50В (это серии Д242, КД203, КД210, КД213).
Вместо тринистора Т10-25 подойдут КУ202В — КУ202Е; проверено на практике, что устройство нормально работает и с более мощными тринисторами Т-160, Т-250 (В моём случае это Т10-25).
Транзистор КТ361А заменим на КТ361Б — КТ361Е, КТ3107, КТ502В, КТ502Г, КТ501Ж — КТ501К, а КТ315А — на КТ315Б — КТ315Д, КТ312Б, КТ3102А, КТ503В — КТ503Г, П307.
Вместо диода КД105Б подойдут диоды КД105В, КД105 или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СП3-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10А либо изготовить самому из любого миллиамперметра, подобрав к нему шунт.
Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.
Предохранитель FU1 – плавкий на 3А, FU2 – плавкий на 10А.
Диоды и тринистор необходимо установить на теплоотводы, каждый полезной площадью около 100см². Для улучшения теплового контакта данных деталей с теплоотводами желательно использовать теплопроводные пасты.
Больше фото можно посмотреть в моём блоге тут:)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector