0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Время часы синхронизация часов

Время часы синхронизация часов

При выполнении любых физических измерений исключительную роль играют пространственно-временные соотношения между событиями . В СТО событие определяется как физическое явление, происходящее в какой-либо точке пространства в некоторый момент времени в избранной системе отсчета. Таким образом, чтобы полностью охарактеризовать событие, требуется не только выяснить его физическое содержание, но и определить его место и время. Для этого необходимо использовать процедуры измерения расстояний и промежутков времени. Эйнштейн показал, что эти процедуры нуждаются в строгом определении.

Для того чтобы в выбранной системе отсчета выполнять измерения промежутка времени между двумя событиями (например, началом и концом какого-либо процесса), происходящими в одной и той же точке пространства , достаточно иметь эталонные часы. Наибольшей точностью в настоящее время обладают часы, основанные на использовании собственных колебаний молекул аммиака (молекулярные часы) или атомов цезия (атомные часы). Измерение промежутка времени опирается на понятие одновременности : длительность какого-либо процесса определяется путем сравнения с промежутком времени, отделяющим показание часов, одновременное с концом процесса , от показания тех же часов, одновременного с началом процесса . Если же оба события происходят в разных точках системы отсчета, то для измерения промежутков времени между ними в этих точках необходимо иметь синхронизованные часы .

Эйнштейновское определение процедуры синхронизации часов основано на независимости скорости света в пустоте от направления распространения. Пусть из точки в момент времени по часам отправляется короткий световой импульс (рис. 4.2.1). Пусть время прихода импульса в и отражения его назад на часах есть . Наконец, пусть отраженный сигнал возвращается в в момент по часам . Тогда по определению часы в и идут синхронно, если .

Существование единого мирового времени, не зависящего от системы отсчета, которое принималось как очевидный факт в классической физике, эквивалентно неявному допущению о возможности синхронизации часов с помощью сигнала, распространяющегося с бесконечно большой скоростью.

Итак, в разных точках выбранной системы отсчета можно расположить синхронизованные часы. Теперь можно дать определение понятия одновременности событий, происходящих в пространственно-разобщенных точках: эти события одновременны, если синхронизованные часы показывают одинаковое время .

Рассмотрим теперь вторую инерциальную систему , которая движется с некоторой скоростью в положительном направлении оси системы . В разных точках этой новой системы отсчета также можно расположить часы и синхронизировать их между собой, используя описанную выше процедуру. Теперь интервал времени между двумя событиями можно измерять как по часам в системе , так и по часам в системе . Будут ли эти интервалы одинаковы? Ответ на этот вопрос должен находиться в согласии с постулатами СТО.

Пусть оба события в системе происходят в одной и той же точке и промежуток времени между ними равен по часам системы . Этот промежуток времени называется собственным временем . Каким будет промежуток времени между этими же событиями, если его измерить по часам системы ?

Для ответа на этот вопрос рассмотрим следующий мысленный эксперимент. На одном конце твердого стержня некоторой длины расположена импульсная лампа , а на другом конце – отражающее зеркало . Стержень расположен, неподвижно в системе и ориентирован параллельно оси (рис. 4.2.2). Событие 1 – вспышка лампы, событие 2 – возвращение короткого светового импульса к лампе.

В системе оба рассматриваемых события происходят в одной и той же точке. Промежуток времени между ними (собственное время) равен . С точки зрения наблюдателя, находящегося в системе , световой импульс движется между зеркалами зигзагообразно и проходит путь , равный
где – промежуток времени между отправлением светового импульса и его возвращением, измеренный по синхронизованным часам и , расположенными в разных точках системы . Но согласно второму постулату СТО, световой импульс двигался в системе с той же скоростью , что и в системе . Следовательно, .

Из этих соотношений можно найти связь между и :
где .

Таким образом, промежуток времени между двумя событиями зависит от системы отсчета, т. е. является относительным . Собственное время всегда меньше, чем промежуток времени между этими же событиями, измеренный в любой другой системе отсчета. Этот эффект называют релятивистским замедлением времени . Замедление времени является следствием инвариантности скорости света.

Эффект замедления времени является взаимным, в согласии с постулатом о равноправии инерциальных систем и : для любого наблюдателя в или медленнее идут часы, связанные с системой, движущейся по отношению к наблюдателю. Этот вывод СТО находит непосредственное опытное подтверждение. Например, при исследовании космических лучей в их составе обнаружены -мезоны – элементарные частицы с массой, примерно в 200 раз превышающей массу электрона. Эти частицы нестабильны, их среднее собственное время жизни равно . Но в космических лучах -мезоны движутся со скоростью, близкой к скорости света. Без учета релятивистского эффекта замедления времени они в среднем пролетали бы в атмосфере путь, равный . На самом деле, как показывает опыт, мезоны за время жизни успевают пролетать без распада гораздо большие расстояния. Согласно СТО, среднее время жизни мезонов по часам земного наблюдателя равно , так как близко к единице. Поэтому средний путь , проходимый мезоном в земной системе отсчета, оказывается значительно больше .

Читайте так же:
Как отрегулировать пластиковые окна самостоятельно если нет шестигранника

С релятивистским эффектом замедления времени связан так называемый « парадокс близнецов ». Предполагается, что один из близнецов остается на Земле, а второй отправляется в длительное космическое путешествие с субсветовой скоростью. С точки зрения земного наблюдателя, время в космическом корабле течет медленнее, и когда астронавт возвратится на Землю, он окажется гораздо моложе своего брата-близнеца, оставшегося на Земле. Парадокс заключается в том, что подобное заключение может сделать и второй из близнецов, отправляющийся в космическое путешествие. Для него медленнее течет время на Земле, и он может ожидать, что по возвращению после длительного путешествия на Землю он обнаружит, что его брат-близнец, оставшийся на Земле, гораздо моложе его.

Чтобы разрешить «парадокс близнецов», следует принять во внимание неравноправие систем отсчета, в которых находятся оба брата-близнеца. Первый из них, оставшийся на Земле, все время находится в инерциальной системе отсчета, тогда как система отсчета, связанная с космическим кораблем, принципиально неинерциальная. Космический корабль испытывает ускорения при разгоне во время старта, при изменении направления движения в дальней точке траектории и при торможении перед посадкой на Землю. Поэтому заключение брата-астронавта неверно. СТО предсказывает, что при возвращении на Землю он действительно окажется моложе своего брата, оставшегося на Земле.

Эффекты замедления времени пренебрежимо малы, если скорость космического корабля гораздо меньше скорости света . Тем не менее, удалось получить прямое подтверждение этого эффекта в экспериментах с макроскопическими часами. Наиболее точные часы – атомные работающие на пучке атомов цезия. Эти часы «тикают» 9192631770 раз в секунду. Американские физики в 1971 году провели сравнение двух таких часов, причем одни из них находились в полете вокруг Земли на обычном реактивном лайнере, а другие оставались на Земле в военно-морской обсерватории США. В соответствии с предсказаниями СТО, путешествующие на лайнерах часы должны были отстать от находящихся на Земле часов на . Наблюдаемое отставание составило , т. е. в пределах ошибок измерений. Через несколько лет эксперимент был повторен и дал результат, согласующийся со СТО с точностью 1 %.

В настоящее время уже необходимо принимать во внимание релятивистский эффект замедления хода часов при транспортировке атомных часов на большие расстояния.

Синхронизация Эйнштейна

Синхронизация Эйнштейна (или синхронизация Пуанкаре-Эйнштейна) — это соглашение для синхронизации часов в разных местах посредством обмена сигналами. Этот метод синхронизации использовался телеграфами в середине 19-го века, но был популяризирован Анри Пуанкаре и Альбертом Эйнштейном, который применил его к световым сигналам и признал его фундаментальную роль в теории относительности. Ее основная область применения — часы в одной инерциальной системе отсчета.

Содержание

Эйнштейн [ править | править код ]

Та же синхронизация достигается путем «медленного» переноса третьих часов от часов 1 до часов 2 при устремлении скорости движения к нулю [2] . В литературе обсуждаются многие другие мысленные эксперименты для синхронизации часов, дающие тот же результат.

Проблема заключается в том, действительно ли эта синхронизация согласованным образом корректно присваивает метку времени любому событию. Для этого необходимо найти условия, при которых:

(a) однажды синхронизированные часы остаются синхронизированными, (b1) синхронизация рефлексивна, то есть любые часы синхронизируются с самим собой (автоматически выполняется), (b2) синхронизация симметрична, то есть, если часы A синхронизированы с часами B, то и часы B синхронизированы с часами A, (b3) синхронизация транзитивна, то есть если часы A синхронизированы с часами B, а часы B синхронизированы с часами C, тогда часы A синхронизированы с часами C.

Если пункт (a) выполняется, то имеет смысл сказать, что часы синхронизированы. Учитывая (a), и если (b1)-(b3) выполняется, тогда синхронизация позволяет нам построить глобальную функцию времени t. Срезы (или слои) t = const называются «срезами одновременности».

Эйнштейн (1905) не признавал возможности приведения (a) и (b1)-(b3) к легко проверяемым физическим свойствам распространения света (см. ниже). Вместо этого он просто написал «Мы предполагаем, что такое определение синхронности свободно от противоречий и возможно для любого числа точек; и что следующие отношения (b2-b3) являются универсальными».

Макс Фон Лауэ (Max Von Laue) [3] был первым, кто изучил проблему согласованности синхронизации Эйнштейна (за счет ранней истории см. Minguzzi, 2011 [4] ). Л. Сильберштейн (L. Silberstein) [5] представил аналогичное исследование, хотя он оставил большинство своих претензий в качестве упражнения для читателей своего учебника по относительности. Доводы Макса Фон Лауэ снова были рассмотрены Х. Райхенбахом [6] и нашли окончательную форму в работе А. Макдональда [7] . Решение состоит в том, что синхронизация Эйнштейна удовлетворяет предыдущим требованиям тогда и только тогда, когда выполняются следующие два условия:

  • (Отсутствие красного смещения) Если из точки A излучены две вспышки, разделенные временным интервалом Dt, отмеченным с помощью часов в точке A, то они достигают точки B, разделенные тем же интервалом времени Dt, отмечаемым по часам в точке B.
  • (Условие замкнутого пути Райхенбаха) Если луч света отправляется по треугольнику ABC, начиная с A и отражается зеркалами в B и C, тогда время его прибытия обратно в A независит от направления движения (ABCA или ACBA).
Читайте так же:
Схема регулировки зарядно пускового устройства

Как только часы синхронизированы, можно измерять одностороннюю скорость света. Однако предыдущие условия, гарантирующие применимость синхронизации Эйнштейна, не подразумевают, что односторонняя скорость света оказывается одинаковой по всей системе отсчета. Учитывая

  • (Условие замкнутого пути Лауэ-Вейля). Время, необходимое лучу света для прохождения по замкнутому пути длины L, равно L/c, где L — длина пути, а c — постоянная, не зависящая от пути.

Теорема [8] (происхождение которой можно проследить до фон Лауэ и Вейля) [9] утверждает, что условие перемещения по замкнутому пути Лауэ-Вейля выполняется тогда и только тогда, когда синхронизация Эйнштейна может применяться последовательно (то есть выполняются (a) и (b1)-(b3)) и односторонняя скорость света относительно синхронизированных таким образом часов остается постоянной по всей системе отсчета. Важность условия Лауэ-Вейля заключается в том, что время, указанное здесь, может быть измерено при помощи единственных часом, и, таким образом, это условие не полагается на соглашение о синхронизации и может быть проверено экспериментально. Действительно, экспериментально подтверждено, что в инерциальной системе отсчета выполняется условие обхода Луэ-Вейля.

Поскольку бессмысленно измерять одностороннюю скорость до синхронизации удаленных часов, эксперименты, требующие измерения односторонней скорости движения, часто могут быть интерпретированы как проверяющие условие замкнутого пути Лауэ-Вейля.

Синхронизация Эйнштейна выглядит естественно только в инерциальной системе отсчета. Можно легко забыть, что это всего лишь соглашение. Во вращающихся системах отсчета, даже в специальной теории относительности, нетранзитивность синхронизации Эйнштейна уменьшает ее полезность. Если часы 1 и часы 2 не синхронизированы напрямую, а только через цепочку промежуточных часов, то синхронизация зависит от выбранного пути. Синхронизация по окружности вращающегося диска дает не устранимую разницу во времени, которая зависит от используемого направления. Это важно в эффекте Саньяка и парадоксе Эренфеста. Эти эффекты учитываются в системе GPS.

Основное обсуждение конвенционализма синхронизация Эйнштейна объясняется Райхенбахом. Большинство попыток отрицать условность этой синхронизации считаются опровергнутыми, за исключением аргумента Маламента   (англ.) русск. , что он может быть получен из требования симметричного отношения причинно-следственных связей. Этот вопрос остается открытым.

История: Пуанкаре [ править | править код ]

Некоторые особенности соглашения о синхронизации обсуждались Пуанкаре [10] [11] . В 1898 году (в философской статье) он утверждал, что постулат о постоянстве скорости света во всех направлениях полезен для простого формулирования физических законов. Он также показал, что определение одновременности событий в разных местах является лишь соглашением [12] . Основываясь на этих соглашениях, но в рамках ныне вытесненной теории эфира, Пуанкаре в 1900 году предложил следующее соглашение для определения синхронизации часов: 2 наблюдателя A и B, которые движутся в эфире, синхронизируют свои часы с помощью оптических сигналов. Из-за принципа относительности они считают себя в состоянии покоя в эфире и считают, что скорость света постоянна во всех направлениях. Поэтому они должны учитывать только время передачи сигналов и затем объединить свои наблюдения, чтобы проверить, являются ли их часы синхронными.

Предположим, что в разных точках есть несколько наблюдателей, и они синхронизируют свои часы с помощью световых сигналов. Они пытаются сверить измеренное время передачи сигналов, но они не знают об их общем движении и, следовательно, считают, что сигналы движутся одинаково быстро в обоих направлениях. Они выполняют наблюдения за встречными сигналами, один из которых перемещается от А к В, а другой от В к А. Локальное время t ′ — это время, показанное часами, настроены таким образом. Если V = 1 K 0 >>>> — скорость света, а v — скорость Земли, которую мы полагаем параллельной оси x в положительном направлении, то мы имеем: t ′ = t − v x V 2 >>> [13] .

Точная синхронизация времени

Точная синхронизация времени

Временной синхронизацией (синхронизация по времени / тайминг) называется комплекс технических и программных средств, предназначенных для обеспечения дискретной передачи информации о значении точного времени от эталонного источника ко всем элементам системы с целью достижения синхронизации работы их внутренних (собственных) часов с эталонным временем.

Решения, связанные с синхронизацией по времени, находят все большее применение в различных технологических процессах и отраслях, это:

  • сети сотовой связи;
  • компьютерные сети и сервера;
  • банковский сектор и финансовые операции;
  • электрические сети и подстанции;
  • мониторинг объектов, зданий и сооружений;
  • мониторинг транспорта и подвижных объектов;
  • системы безопасности и многое другое.

Сопутствующее оборудование

В зависимости от требований к точности, предъявляемой к временной синхронизации, выбирается источник, который будет считаться эталоном.

Спутники ГНСС оснащены атомными часами, в которых используются внутренние высокостабильные генераторы опорной и тактовой частот (цезиевые и рубидиевые стандарты частоты) для измерения временных характеристик с точностью около 10 нс. Это дает системным интеграторам самый точный в мире и стабильный источник информации о времени.

ГНСС решения для тайминга подходят для широкого спектра применений, где точная синхронизация времени необходима для управления рабочими процессами и данными.

Особенности временной синхронизации, осуществляемой посредством ГНСС:

  • широкий спектр применяемых протоколов для обеспечения информацией о времени, с точностью необходимой для выполнения конкретной задачи (1PPS, VARF, GPST);
  • применение на наземных станциях управления GPS и самих спутниках GPS атомных часов — наиболее точных известных стандартов времени и частоты;
  • точная синхронизация времени двух и более спутниковых систем навигации;
  • возможность национальных лабораторий времени сравнивать свои часы с часами других лабораторий относительно всемирного координированного времени UTC;
  • бесперебойная и надежная работа с внешним генератором тактовых импульсов.

Типы синхронизации времени посредством ГНСС

Синхронизация по времени отдельно взятой системы может быть достигнута с помощью:

  • сгенерированных ГНСС приемником журналов времени;
  • электрических сигналов (1PPS, VARF), генерируемых ГНСС приемником c требуемой тактовой частотой;
  • синхронизация по схеме T-Sync.

Журналы времени

Все сообщения приемников с ГНСС данными содержат информацию с меткой времени. Эта метка времени состоит из номера недели GPS (отсчет номера недели ведется с 5 января 1980 года) и номер секунд в неделе (время недели (TOW)), которое отображает количество секунд от предыдущей полночи (с ноля часов суббота/воскресенье). TOW выводится с дискретностью 1 мс.

Журнал времени содержит несколько фрагментов информации (эпохи), связанных временными событиями (интервалы). Также, в журнале формируются оценки времени UTC, для обеспечения которых, передаваемое спутником GPS навигационное сообщение включает временные разности между GPST (время GPS) и UTC по модулю одна секунда и скорость их изменения.

Для дальнейшей работы с данными журнала времени, данные могут быть преобразованы в общепринятые отраслевые форматы. Это необходимо для хранения и передачи промежуточных измерений, произведенных приёмником, а также выполнения постобработки полученных данных приложениями различных производителей приемников и программ. Например, формат RINEX или GGTTS.

Посекундный импульсный сигнал (1PPS) и переменная частота (VARF)

Для мониторинга часто изменяющихся показателей, например, таких как температура или давление и синхронизация их с данными ГНСС можно использовать сигналы 1PPS или VARF. Так как сигнал 1PPS не содержит информации по дате и времени, его чаще всего используют вместе с другими протоколами синхронизации, например NTP.

Реализация сигнала переменной частоты VARF осуществляется выдачей приемником строба с электрическими импульсами различной длительности (сигнал о необходимости выполнения операции).

Пользователи могут настроить полярность, период и длительность импульса выходного строба. Сигналы VARF могут генерироваться с частотой до 50 МГц, тогда как частота PPS может быть до 100 Герц. Передний фронт сигнала PPS синхронизирован с односекундным тактом часов приемника. На некоторых моделях приемника передний фронт сигнала VARF также можно синхронизировать с односекундным тактом часов приемника. Во всех случаях частота VARF привязана к частоте внутренних часов приемника, которые, в свою очередь, по умолчанию синхронизированы со временем GPS.

Большинство сообщений содержит информацию о GPS времени в различных сочетаниях и форматах.

Внешний генератор тактовых импульсов

ГНСС приемник по умолчанию управляет внутренним кварцевым генератором. При работе с внешним опорным генератором частоты приемник может использовать только его данные, а также может его подстраивать. Управление подстройкой внешнего опорного генератора осуществляется выходным управляющим сигналом VARF.

При использовании высокоточного внешнего генератора частоты ГНСС измерения могут рассчитываться ГНСС приемником, используя его время и частоту. В этом случае пользователи могут отслеживать смещение и дрейф своего внешнего генератора частоты, анализируя измерения GPS, выполненные с использованием его времени и частоты.

Синхронизация времени по схеме T-Sync

В приемниках NovAtel предусмотрена возможность приема внешних стробов с частотой 5 или 10 МГц и 1PPS для синхронизации внутренних часов с этими сигналами. После отключения/включения питания или перезагрузки T-Sync позволяет внутренним часам приемника повторно надежно синхронизироваться с внешними устройствами. При повторной инициализации приемника смещения по времени не произойдет.

Необходимые аспекты

При выборе ГНСС оборудования для задач временной синхронизации нужно учесть следующие аспекты:

  • требования к точности решения;
  • наличие сигналов ГНСС в месте эксплуатации;
  • скорость (дискретность) решения;
  • непрерывность получения данных;
  • возможность экспорта данных;
  • стоимость системы;
  • возможные ограничения при установке системы;
  • тип решения — в реальном времени и/или постобработка.

Эпилог

Практически ни одно из современных направлений деятельности человека не может обойтись без тесного сотрудничества со смежными системами, дополняющими ее новой информацией. Также, существующие реалии диктуют необходимость не только в обмене огромными объемами всевозможных данных, но и требующими выполнять эти процессы синхронно.

Множество ответственных направлений топливно-энергетической сферы заставляет вести мониторинг процессов в режиме реального времени.

Интеграция инженерных систем и систем безопасности зданий и сооружений не может осуществляться без синхронной работы серверов всех смежных систем.

Изменение климатических условий в разных концах земного шара невозможно увязать без единой системы времени.

Все это требует от нас подходить к каждой новой задаче с большой ответственностью, предлагать нашим клиентам только самое качественное оборудование ГНСС, положительно зарекомендовавшее себя в различных сферах за годы применения.

Компания, ГНСС плюс, предлагает широкий спектр оборудования ГНСС для решения задач синхронизации по времени.

В качестве ГНСС приемника, обеспечивающего прием эталонного времени со спутников ГНСС, может быть использована любая OEM плата NovAtel седьмого поколения, особое внимание стоит обратить на ГНСС плату OEMStar.

Наиболее популярными ГНСС антеннами для решения задач временной синхронизации являются антенны Antcom серии BG3 и BG5 и Tallysman TW3400 и TW3440.

Для тайминга также могут использоваться ГНСС SMART-антенны, такие как Tallysman TW5340.

Синхронизация часов и относительность одновременности

Интересно, что понятие времени характерно и актуально исключительно для физики. Но именно это привлекает исследователей, которые хотят узнать и понять его концептуальное устройство. Среди таких учёных особое место занимает А. Эйнштейн, именно его принято считать новатором в данном вопросе. Он первым обратил внимание на два понятия: «синхронизация часов» и «одновременность». Обращаясь к длительности процессов и учитывая их пространственную протяжённость, то его определяют в различных сегментах протяжённости или точках. Это достаточно логично, особенно со стороны установленной в релятивистской механике тесной связи протяжённостей и длительностей.

Подобная взаимосвязь находит своё выражение в каком-то специфическом понятии. Этим понятием и стала «синхронизация часов», которое предложил А. Эйнштейн. Часы, которые находятся в различных точках различных систем отсчёта, должны находиться в согласованности друг с другом – это первый постулат, а второй в том, что данное согласование должно выражать концептуальное устройство специальной теории относительности.

А. Эйнштейн выдвинул идею синхронизации часов. Она заключалась в следующем: предположительно часы находятся в точке А, они показывают время t1. Луч света, направленный из точки А в точку В, где он отражается от зеркальной поверхности и возвращается в А ко времени t3. Логично сделать вывод, что точки В свет достиг ко времени t2.

Таким образом, логично сделать вывод, что в момент прихода сигнала на часах, которые расположены в точке В, должно быть выставлено время t2. Применяя данную процедуру синхронизации, все часы данной системы можно привести в соответствии друг другу.

Становится ясным, что требование расставить часы по всем точкам системы на деле не представляется возможным. Но на этом никто и не настаивает. Достаточно применять понятие синхронизации часов в любой ситуации, когда определяется длительность объекта. Процедура синхронизации часов, которую предложил А. Эйнштейн, предлагает использовать некоторые динамические факторы. Исходя из этого становится ясным, что она по самому своему существу является динамической.

Историческое положение процесса синхронизации часов

Еще до того, как на синхронизацию часов обратил внимание А. Эйнштейн, об этом говорил А. Пуанкаре, который за семь лет до этого использовал подобные практические методы, но остановился в пределах понимания электродинамики Максвелла-Лоренца.

В этом же контексте А. Эйнштейн чётко соблюдал концепцию, которую сам же создал и развивал в специальной теории относительности. Стоит отметить, что предпринималось огромное количество попыток, чтобы признать специальную теорию относительности, и корректировать его воззрения.

В такой плоскости важное значение придавалось рассуждениям Г. Рейхенбаха. Он, относясь к числу высококлассных логиков, заметил следующее обстоятельство. Опираясь на логику недопустимо с помощью световых сигналов сначала синхронизировать часы, а после на опираясь на данные показания определить скорость самого света в прямом и обратном направлении. Г. Рейхенбах полагал, что логический круг в рассуждениях, касающихся скорости света, преодолевается посредством введения некоторых соглашений.

Скорость света в данной ситуации приобретает форму постулата, тем самым показывает прохождение всего пути от точки А к В и от В к А за конкретный промежуток времени Δt. Опираясь на формальную логику, можно предположить, что скорость света в прямом и обратном направлениях не может быть одинаковой. Одинаковость скорости света в обеих направлениях показана коэффициентом ε = 1/2. Со всей строгостью нужно сказать, что его значения располагаются в интервале (0–1). Формула Рейнбаха представляет собой:

где ε – некоторый произвольный коэффициент, t3 – последовательные моменты времени.

Случай ε = 1/3 отвечает условию, что свет по направлению от A к В двигался со скоростью, большей постоянной с, а по направлению от В к А – со скоростью, меньшей чем с.

Таким образом, Г. Рейнбах сделал вывод, что значение скорости света весьма условно, чем нашёл поддержку среди многих философов, которые были его современниками. Хотя учёные-физики опровергали результаты его исследований. Ошибочность его мнения видели в том, что скорость света является инвариантной величиной в силу того, что она отвечает требованиям второго постулата специальной теории относительности. Более того, у учёных появляются вопросы относительно природы света. Главное сомнение заключалось в том, насколько она является неоднородной, раз свет может двигаться в разных направлениях с разными скоростями, и насколько эти скорости могут отличаться.

Разные учёные совершенно по-разному реагировали на данные вывод. Точки зрения А. Пуанкаре и А. Эйнштейна имели принципиально разные позиции.

Споры учёных относительно синхронизации часов

А. Пуанкаре выдвигал предположение, что экспериментальные данные не противоречат соглашению об инвариантности скорости света. А. Эйнштейн напротив, говорил о том, что равенство скоростей света для встречных направлений не выступает причиной или гипотезой о природе света. Именно в силу этого, он придерживался мнения, что действительная скорость света является достаточно конкретной величиной. Рассуждения Г. Рейхенбаха в этом отношении ближе к позиции логики и не имеет физического смысла.

Ещё одно мнение сформулировал по данному вопросу Г. Малыкин. Его воззрения достаточно глубокие относительно этой проблемы. Он, полагаясь на идеи Б. Болотовского и В. Гинзбурга, которые предполагали, что есть возможность применения для синхронизации часов световых зайчиков. Элементарные расчёты наглядно показывают пример того, как скорость перемещения зайчика по данной плоскости может превышать скорость света в вакууме в значительной степени.

Это положение подчёркивает то, что они не противоречат специальной теории относительности, в основе которой лежат взаимодействия и они не могут распространяться быстрее, нежели не связанные друг с другом точки в силу отсутствия связей и причинных отношений.

Г. Малыкин предложил для синхронизации часов использовать световые зайчики. Это позволит при помощи эксперимента проверить равенство скоростей света во всех встречных направлениях. Таким образом, логический круг, о котором упоминал Г. Рейхенбах, размыкается. Как следствие происходит отрицание конвенциальных возможностей, о которых так часто фантазировали множество философов.

Автор предполагает, что метод световых зайчиков не отрицает тезис об условном характере скорости света. Сложность в данной ситуации появилась не от маленькой скорости света, а из-за необходимости определения скорости при помощи опоры на концепт времени. Эти самые зайчики не отрицают такой необходимости. Их применение остаётся исключительно в пределах специальной теории относительности.

Как итог, А. Эйнштейн, отрицая положение от условности скорости света в вакууме, был верен в своих суждениях. Руководствуясь динамическим принципом, учёный обязан внести ясность в возможность распространения света в вакууме с различной скоростью. Отказавшись от данного объяснения, он показал своё непринятие динамического принципа, однако это недопустимо. В корне неверно признавать специальную теорию относительности вместе с её динамическим принципом и сопровождать отрицанием данного принципа при характеристике скорости света. Тот логический круг, который упоминался выше, актуален только до тех пор, пока содержание динамического принципа не учитывается.

Понятие синхронизации часов и понятие одновременности органично связаны между собой. Два события можно считать одновременными только в том случае, если они происходят при одинаковых показаниях синхронизированных часов.

Мысленный эксперимент, который проводил А. Эйнштейн, говорит о том, что понятие одновременности носит относительный характер.

Предположим, что внутри одного вагона поезда, который движется равномерно по рельсам платформы, причём точно в его середине, произошла вспышка света. Скорость света одинаково как относительно платформы, так и по отношению к стенкам вагона. Тот, кто наблюдает за этим зрелищем, находится внутри вагона, фиксирует одновременное достижение лучом света двух противоположных стенок. Совершенно иную ситуацию может наблюдать человек, который находится на платформе. Он видит, как свет качается стенки, которая не удаляется от наблюдателя, а приближается к нему.

Из всего этого следует, что одновременность похожа со скоростью механического перемещения играет роль отношения, и никак не влияет на свойства времени, которые не зависят от системы отсчёта. Очевидно, что нет мировой одновременности, которая множеством людей, не понимающим специальной теории относительности, принимается одинаково на интуитивном уровне.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector