0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Синхронизатор (фотография)

Синхронизатор (фотография)

Синхрониза́тор — устройство для синхронизации затвора фотоаппарата с внешними фотовспышками или аналогичным студийным освещением.

Содержание

Способы синхронизации [ править | править код ]

С течением времени способы синхронизации вспышек с затвором претерпели значительные изменения. Магниевые фотовспышки синхронизировались вручную, благодаря длинным выдержкам. Вспышка поджигалась сразу же после открытия доступа света и начала ручной выдержки, а после срабатывания вспышки затвор закрывался. Для низкочувствительных фотоматериалов тех лет, длинные выдержки были общеприняты, и автоматическая синхронизация не требовалась.

Появление высокочувствительных фотоматериалов, позволяющих вести в помещении съёмку с моментальными выдержками без штатива, совпало по времени с изобретением одноразовых баллонов с электрическим поджигом, пригодных для автоматической синхронизации [1] . Первые синхроконтакты выполнялись в виде отдельного устройства — синхронизатора, соединявшегося со вспышкой и спусковой кнопкой фотоаппарата [2] . Замыкание контактов происходило при нажатии на кнопку одновременно со срабатыванием затвора. Достоинством такого способа была доступность съёмки со вспышкой для аппаратуры, не оснащённой встроенным синхроконтактом [3] . Однако, точность такой синхронизации была невысока, иногда приводя к появлению пропущенных кадров, снятых без вспышки.

Постепенно синхроконтакт стал частью конструкции затворов. В этом случае контакты замыкаются движущимися деталями затвора при его срабатывании. Соединение со вспышкой осуществлялось двумя проводами, каждый из которых подключался к затвору своим штырьковым разъёмом. Со временем два отдельных провода заменили двухжильным кабелем, а парные разъёмы уступили место одному коаксиальному типа «PC» (Prontor-Compur).

Однако, проводное соединение было недостаточно надежным и кабель мешал при репортажной съёмке, поэтому к 1950-м годам провод исключили из конструкции накамерных вспышек, благодаря появлению центрального контакта «горячего башмака». Тем не менее, выносные вспышки продолжали подключать к фотоаппарату кабелем. Синхрокабелем оснащается большинство современных студийных электронных вспышек. Он подключается к вспышке, как правило разъёмом типа «Джек», а к фотоаппарату коаксиальным разъёмом «PC». Это наиболее традиционный и самый надёжный способ синхронизации. Недостатки: фотограф ограничен длинной кабеля, мещающего другим участникам съёмки. Кроме того, электрическое сопротивление слишком длинного кабеля может сделать работу синхроконтакта невозможной.

Световая ловушка [ править | править код ]

Необходимость синхронизации вспышек, расположенных на большом удалении от камеры привела к попыткам разработать беспроводные способы, первый из которых основан на резком изменении освещённости при срабатывании ведущей вспышки, установленной на фотоаппарате. К цепи поджига ведомой вспышки подключается устройство с безынерционным фотодиодом, реагирующим на передний фронт импульса ведущей вспышки, но не воспринимающим плавные колебания света. Таким образом можно добиться устойчивого срабатывания любого количества ведомых (англ.  Slave ) вспышек от импульса ведущей. Светосинхронизатор, или «световая ловушка», выполненная в виде съёмного блока, подключается к синхрокабелю вспышки. Со временем, светосинхронизаторы стали встраиваться в большинство серийных вспышек, например «Nikon Speedlight SB-26». В СССР световыми ловушками оснащались вспышки «ФИЛ-101» и некоторые другие [4] .

Современные студийные вспышки штатно оснащаются светосинхронизатором, сокращая количество проводов в студии. Главным недостатком технологии считается невозможность одновременной работы в одном помещении нескольких фотографов, поскольку ведомые вспышки в этом случае будут срабатывать на световые импульсы каждого из них [5] . Системные вспышки для цифровых фотоаппаратов запускают светосинхронизатор слишком рано, поскольку он реагирует на предварительный измерительный импульс, излучаемый до открытия затвора. Для устранения проблемы современные световые ловушки, выпускающиеся в виде отдельного блока, снабжаются задержкой срабатывания [6] . Как правило, задержка может работать в нескольких режимах: фиксированное запаздывание (как правило, 50 миллисекунд) или срабатывание от второй, третьей или четвёртой вспышки ведущего прибора.

ИК-трансмиттер [ править | править код ]

Более прогрессивным способом беспроводной синхронизации стал инфракрасный канал, при помощи которого передаётся кодированное сообщение о срабатывании затвора. В этом случае случайное срабатывание от посторонней вспышки исключается, так как разными ИК-передатчиками может использоваться различная кодировка команд. Инфракрасный трансмиттер соединяется с синхроконтактом фотоаппарата кабелем или крепится на горячий башмак, при срабатывании затвора испуская модулированное соответствующим кодом сообщение такому же приёмнику, установленному на вспышке. С конца 1980-х годов системные фотовспышки ведущих производителей фотоаппаратуры начали штатно оснащаться приёмником инфракрасного сигнала трансмиттера. Наиболее известны системы Canon Speedlite и Nikon Speedlight, допускающие дистанционный запуск любого количества внешних вспышек [7] . Большинство устройств позволяют работать на трёх или четырёх независимых каналах, предотвращая нежелательные ошибки при работе нескольких фотографов.

В системе Canon кроме вспышек до недавнего времени выпускался трансмиттер ST-E2, предназначенный для установки в башмак и запуска выносных системных вспышек [8] . Аналогичными функциями обладают топовые модели вспышек этой же системы, постепенно полностью заменившие на рынке слишком дорогой трансмиттер. Кроме функции синхронизации перечисленные системы осуществляют по инфракрасному каналу обмен данными, поддерживая автоматическое управление экспозицией с её измерением через объектив. Простейший вариант инфракрасного триггера синхронизации используется с большинством студийных вспышек, штатно оснащаемых кроме простой световой ловушки инфракрасным портом. Наиболее серьёзным недостатком технологии считается сравнительно небольшая дальность работы таких систем, ограниченная соображениями безопасности инфракрасного излучения для зрения. В помещении уверенная синхронизация достигается на расстояниях не более 30—40 метров, а на открытом воздухе эта дистанция ещё меньше. Кроме того, работе системы мешают посторонний свет и непрозрачные препятствия.

Читайте так же:
Синхронизация от встроенной вспышки nikon

Радиосинхронизатор [ править | править код ]

Радиосвязь в значительно меньшей степени зависит от оптических особенностей среды, более надёжно работая в большинстве съёмочных ситуаций. Система радиосинхронизатора состоит из передатчика, который соединяется с синхроконтактом фотоаппарата, и приемника, присоединяемого к вспышке. Один трансмиттер может запускать неограниченное количество вспышек, с каждой из которых должен быть состыкован приёмник. При этом установка вспышки на фотоаппарате необязательна. Наиболее совершенные радиосинхронизаторы кроме команды на запуск передают данные об экспозиции, поддерживая экспоавтоматику системных вспышек [5] . Кодирование запускающего сигнала позволяет «разводить» системы вспышек, установленные разными фотографами, по разным каналам. На крупных спортивных мероприятиях, где одновременно ведут съёмку несколько десятков репортёров, в пресс-центре обычно вывешивается список занятых каналов радиотрансмиттеров.

Радиосинхронизаторы имеют значительно большую рабочую дальность, надёжно запуская вспышки даже на крупных стадионах. Им не страшны препятствия и не требуется прямая видимость. Недостатком синхронизации по радио считается запаздывание срабатывания ведомой вспышки, проявляющееся в наиболее дешёвых моделях. Это выражается в невозможности съёмки на пределе синхронизации затвора, допуская только сравнительно длинные выдержки в 1/30—1/60 секунды [9] . Другой проблемой является недостаточная помехозащищённость, приводящая к случайным срабатываниям от автомобильных сигнализаций и других устройств, работающих на совпадающих частотах [5] .

Импульсный свет в фотографии

о накамерных вспышках, студийных моноблоках, генераторах и т.п..

  • Вход
  • Регистрация
  • Ссылки
  • Поиск

Текущее время: 7 ноя 2021, 19:14

Схемы светосинхронизаторов на 2-й импульс. Самые первые

  • Автор
  • Сообщение

Схемы светосинхронизаторов на 2-й импульс. Самые первые

  • Цитата

Изображение

Изображение Изображение Изображение Изображение

Аналоги деталей: T1 КП307А — 2N5104, 2N5394. DD2 К561ТМ2 — CD4013, HEF4013. DD1 К561ЛН2 — CD4049A, HEF4049B. S2 АОТ110А — 4N33, но можно и 4N35.
Пожалуйста, перед заменой элемента на аналогичный, ознакомьтесь с его даташитом.
Описание, рисунки плат и сейчас еще можно найти здесь http://www.cqham.ru/flash.htm

Re: Схемы светосинхронизаторов на 2-й импульс. Самые первые

  • Цитата

Другая схема, тоже очень известная и много раз повторенная — это схема с сайта Бориса Сомова, автора программы фото на документы «Studio» http://www.dpstudio.ru/equipment.html#FlashCatch

Изображение

Изображение Изображение Изображение Изображение Изображение Изображение

Схема светосинхронизатора на двойной импульс работает так:

Изображение

Микросхема 561ЛЕ5 (СD4001) состоит из 4 логических элементов ИЛИ-НЕ. Это означает, что если и на первом входе и на втором входе элемента есть одновременно сигналы одинакового уровня, то на выходе
будет сигнал противоположного состояния. И если на входах сигналы разного уровня, то состояние выхода остается неизменным и низкого уровня. При появлении первого импульса транзистор VT1 открывается и на входах 1 и 2 — устанавливается логический 0, а на выходе 3, как и следует для элемента ИЛИ-НЕ, — логическая 1, т.е. положительное напряжение. Появление лог.единицы на вх.5 запускает одновибратор на DD2 и DD3, на выходе которого появляется логическая единица. И сохраняется, пока не разрядится конденсатор C3, 1 мкФ. Если в этот момент приходит второй импульс, то на входе 5 снова положительное напряжение и на вх.6 тоже сохраняется положительное напряжение. В результате на выходе 4 должно быть низкое напряжение — логический 0. И теперь, поскольку на выходе 4 и, следовательно, на входе 13 имеется логический 0 и входе 12 тоже логический 0 (транзистор открыт вторым импульсом), то на выходе 11 должно появиться положительное напряжение, открывающее тиристор MCR100-6 (SF05G1).

Если второй импульс (логический 0 на вх.12 ) приходит поздно, конденсатор C3 уже разрядился и на входе 13 установилась логическая 1 — положительное напряжение, то на выходе 11 остается логический нуль — поджига по второму импульсу нет. Поджиг по этой схеме возможен только тогда, когда на входах 12 и 13 одновременно присутствуют логические нули.

Попробуйте с фотодиодом на микрофонном входе звуковой карты записать и измерить интервал между первым и вторым импульсом вспышки на вашем фотоаппарате. Возможно, «окно», которое обеспечивает схема и в течение которого должен проскочить второй импульс, слишком короткое по времени.

Читайте так же:
Можно ли отрегулировать точность часов

Работоспособность схемы, т.е. ответ схемы на второй импульс можно проверить, используя запускающую вспышку со стробоскопическим режимом (Canon 580EX, 500EX II, Nikon SB-800, SB-900, Metz-40, -54-,-58, Sigma-500 и другие):
установив количество импульсов — 2 и частоту — 10 Гц и выше. Чем выше частота, тем короче интервалы между импульсами. Например, если ваш синхронизатор начнёт срабатывать на второй импульс, начиная с частоты стробоскопа 23 Гц и выше, то значит, длина «окна» равна 1000 мсек/23=43,5 мсек. И второй импульс, приходящий в период от 0 мсек до 43 мсек будет вызывать срабатывание схемы.
Если второй импульс будет приходить позже, с большим интервалом, — ведомая вспышка не сработает. Т.е. по частоте импульсов стробоскопа можно судить о длине «окна», в течение которого схема синхронизатора готова среагировать на второй импульс ведущей вспышки.
Судя по таблице , составленной Сергеем Моревым, самое маленькое «окно» — 53 мсек допустимо для Canon Ixus 750 и для большей части фотоаппаратов этот интервал составляет 85-100 мсек. Таблица с дополнениями также имеется в сообщении: viewtopic.php?p=23305#p23305
Также можно измерить интервалы импульсов ведущей вспышки, если подключить ногу 3 микросхемы на линейный вход компьютера через резистор примерно 1-5 кОм. На ноге 3 должно быть 2 импульса или столько, сколько делает запускающая вспышка. Записав сигнал в программе Sound Forge, можно измерить расстояние между импульсами.

Изображение

Затем, записав сигнал на ноге 13, можно получить длительность «окна», потому что синхронизатор срабатывает на второй импульс, когда нога 12 «заземлена» транзистором во время второго импульса и пока на ноге 13 напряжение близко к 0 Вольт, если я правильно понимаю эту схему.
Длительность периода, когда на ноге 13 сохраняется напряжение логического нуля, т.е. «окна», определяется величиной конденсатора C3 и резистора R4.
Далее по результатам измерений менять ёмкость и резисторы в обвязке микросхемы, чтобы обеспечить достаточную длительность «окна» на ноге 13. Т.е. нужно обеспечить, чтобы при замыкании 1 и 2 входов на 0, на выводе 4 напряжение падало почти до нуля (логический 0) и сохранялось в течение интервала, большего, чем интервал между первым и вторым импульсом вашего ф/аппарата. Для Canon 350D это больше, чем 62 мсек после первого импульса. Если сделать в этой схеме длительность разрешающего интервала (окна) равной 260 мсек, то с таким синхронизатором будет работать большое количество фотоаппаратов и можно будет синхронизировать ведомые вспышки на выдержках вплоть до 1/4 сек (по второй шторке).

Как проверить работу схемы ?

Сначала проверяем детали, начиная с конца.

Изображение

Проверить исправность тиристора и выходной части микросхемы D1.4 можно так:
1 Тест) подать через резистор 1-10 кОм на управляющий электрод +9 В от батарейки — если вспышка исправна и тиристор исправен, будет поджиг вспышки
2 Тест) Включаем режим по 1 импульсу. Если замкнуть вывод микросхемы номер 12 на землю (или замкнуть коллектор и эмиттер VT1), то тоже должен быть поджиг вспышки.

Если предыдущие тесты прошли успешно, то можно двигаться дальше:
3 Тест) Проверка работоспособности фотодиода и его усилителя. Соединяем управляющий электрод тиристора через резистор 1 кОм с выводом номер 3. Если все в порядке, то вспышка, подключенная к тиристору, будет срабатывать в ответ на срабатывание любой внешней вспышки. Пока не ждем синхронизации ведомой вспышки со встроенной вспышкой фотокамеры. Главное убедиться, что фотодиод и усилитель работоспособны.

Далее, для проверки работоспособности схемы следует временно добавить в схему две кнопки S1 и S2. S1 имитирует работу фотодатчика, а S2 — работу одновибратора D1.2+D1.3

Изображение

При нажатой кнопке S2 каждое нажатие на кнопку S1 будет вызывать поджиг вспышки.
Далее, если одновибратор DD2+DD3 исправен, и вы будете успевать нажать повторно на кнопку S1 в течение «окна» (S2 должна быть разомкнута), то тогда вспышка будет происходить на каждое второе замыкание S1. Если вспышки нет, то или «окно» маловато и вы медлительны, не успеваете, или есть неисправность схемы.

Вариант схемы Бориса Сомова на двойной импульс, выпускаемый ф. Поиск-Фото под названием СФ-8а «Профессионал», можно приобрести в магазине за сравнительно небольшую цену.

Накамерные вспышки. Теория

Зачем фотоаппарату нужна вспышка? Когда и как ей надо пользоваться? Что значат все эти характеристики и какие из них необходимы? Зачем некоторые фотографы ставят на вспышки фильтры и софтбокы и вообще периодически носят их в руках вместо того, что бы установить на фотоаппарат? И почему многие не рекомендуют использовать встроенную вспышку на камере, а фотографии, всё-таки сделанные с её использованием обычно выглядят мягко говоря странно (если это не кадры с кошками)?

Читайте так же:
Как синхронизировать с камерой внешнюю вспышку

В течении двух статей я попробую ответить на эти и некоторые другие вопросы. В данной части я затрону основные характеристики и особенности конструкции внешних вспышек, важные вне зависимости от производителя и модели.

Достоинством фотовспышек по сравнению с источниками постоянного света является большая энергоэффективность, благодаря возможности кратковременной работы только при открытом затворе. Кроме того, фотовспышка позволяет получать резкие фотографии быстродвижущихся объектов за счёт очень короткого времени свечения.

Но это преимущество накладывает и свои ограничения на процесс съёмки. Вспышки дают чрезвычайно короткий импульс (1/1000 – 1/50000 секунды), намного более короткий, чем среднее время срабатывания затвора. Если обычно для изменения экспозиции кадра вы могли менять чувствительность, диафрагму или выдержку, то с добавлением вспышки изменение времени экспонирования больше не имеет значения – почти весь (или весь, если кроме вспышки нет других источников) свет приходит в очень короткий промежуток времени.

Накамерные вспышки большинства производителей имеют много общего между собой. Это и в целом похожий внешний вид, и по большему счету не сильно отличающийся функционал.

Давайте рассмотрим основные части вспышки на примере Godox V860C-II.

В самом основании находится крепеж вспышки к горячему башмаку камеры.

Чуть выше – экран и куча кнопок для настройки вспышки. Справа прячется отсек для четырёх пальчиковых батареек.

Верхняя поворотная часть вспышки с лампой – это основное отличие накамерных вспышек от встраиваемых и их главное преимущество. Поворотная голова позволяет направлять луч света не только непосредственно вперед, тем самым убивая все тени на фотографии и делая картинку плоской, но и наверх, в стороны и даже назад, позволяя свету отражаться и рассеиваться, полностью преображать получаемое изображение.

Левый снимок сделан со вспышкой в лоб. Свет на правой фотографии отражён от стены.

Вспышки других производителей будут выглядеть иначе: набор и расположение кнопок обязательно окажется другим, угол вращения поворотной головы по горизонтали будет отличаться в зависимости от класса устройства, да и интерфейс далеко не у всех получается одинаково простым и удобным. Главное то, что накамерная вспышка всегда ей и остаётся, а модель и производитель зависят от задач, вашего бюджета и вкуса.

Давайте теперь рассмотрим основные характеристики накамерных вспышек.

Пожалуй, единственная характеристика вспышки, которая будет важна независимо от того, что вы собираетесь с ней делать – это мощность максимального импульса. Её принято называть ведущем числом и измеряется оно, как ни странно, в числах. Например, у вышеупомянутой вспышки от Godox это число равно 58. Что это значит? По-хорошему эта цифра показывает расстояние в метрах, на котором мы сможем получить правильно проэкспонированный от света одной только вспышки объект при ISO 100 и диафрагме объектива равной еденице. У некоторых производителей ISO может равняться 200, но, в целом, это маркетинговые хитрости. Чем больше ведущее число вспышки – тем больше её мощность. Чаще всего значения в районе 50 более чем достаточно.

Естественно, вам далеко не всегда понадобится максимальная мощность вспышки.

Часто хватит и половины, а иногда и минимального импульса. В интерфейсах разных вспышек сила импульса показывается дробями, где 1/1 соответствует максимуму, а 1/128 – минимуму. Между этими крайними значениями полно промежуточных. Определять, какое именно нужно в данной конкретной ситуации вам нужно самим. Если, конечно ваша вспышка полностью мануальна и лишена автоматики.

Thriugh the lens – «сквозь линзу/объектив» – способ измерения экспозиции непосредственно через съёмочный объектив фотоаппарата. Замечательная технология, позволяющая вашим камерам автоматически определять необходимые параметры для получения правильно проэкспонированного кадра. Но при использовании вспышки необходимо учитывать и свет, испускаемый ей непосредственно в момент съёмки. Для этого прямо перед снимком вспышка даёт очень слабый импульс. Он позволяет камере оценить количество света от всех источников, включая вспышку и правильно подобрать настройки с её учётом.

Читайте так же:
Гаджет для регулировки яркости экрана

Проще говоря, вспышка с поддержкой TTL позволяет вашей камере снимать без необходимости вручную выбирать мощность, а полностью мануальная вспышка – нет (автоматический режим камеры вам никто не заблокирует, но настройки она будет подбирать некорректные).

Основным преимуществом неавтоматических вспышек является цена. Да, конечно, возможность настройки мощности без вашего участия бывает полезной в жанрах, где все очень быстро меняется и у вас нет времени на изменение ещё одного параметра. Но это не всегда критично. Наоборот, вдумчивый подход и ручные настройки при неторопливой предметной съёмке, когда вспышка стоит не на камере, могут обеспечить лучший результат чем автоматика.

Чёрная полоса на этом снимке взялась от того, что он был сделан со вспышкой на выдержке 1/320 секунды. Почему?

На этой гифке видно, как работает затвор большинства современных камер. Если на относительно длинных выдержках (до 1/250 секунды) есть момент, когда затвор полностью открыт, то при сокращении времени экспонирования он уже никогда не открывается полностью. Как я писал выше, импульс вспышки очень короткий. Если на длинных выдержках вспышка синхронизируется с моментом полного открытия затвора, то на коротких неизбежно остаётся неосвещённая вспышкой часть кадра – она просто выключается до того, как затвор пройдёт весь цикл.

Это ограничение можно обойти, если вспышка поддерживает высокоскоростную синхронизацию – HSS. В таком случае вместо одного импульса излучается серия менее мощных, позволяющих получить полностью экспонированный кадр на выдержках вплоть до 1/4000 – 1/8000 секунды. Эта функция позволяет снимать на открытой диафрагме при большом количестве света, а так эффективней замораживать движения.

Иногда во время съёмки у вас может возникнуть необходимость снять вспышку с камеры и добиться её срабатывания на удалении. Или просто добавить к уже установленной на фотоаппарат вспышке ещё одну где то поблизости.

Самые старые и бюджетные модели поддерживают срабатывание только в режиме световой ловушки. В этом случае датчик на вспышке улавливает световой импульс от другой вспышки. Никакой возможности дистанционно управлять мощностью да и о высокоскоростной синхронизации можно забыть, зато в этом режиме вспышки от разных производителей не конфликтуют между собой и замечательно синхронизируются.

Синхронизация по оптическому каналу в целом похожа на предыдущий пункт, но уже подразумевает дистанционное управление параметрами вспышки. Но работает этот режим уже в пределах одной системы, об универсальности можно забыть.

Большим недостатком предыдущих видов синхронизации является ограниченная дальность и необходимость нахождения устройств в пределах прямой видимости. Радио синхронизация решает эту проблему. Последнее время у многих производителей начали появляться вспышки со встроенными радиомодулями. Это заметно упрощает жизнь. Если подобрать нужное оборудование, то вспышкой можно управлять прямо с камеры, даже если последняя находится на расстоянии ста метров от вас!

На этой гифке показан экран Yongnuo 660 и его различные режимы синхронизации. TX – режим ведущей вспышки, позволяющий управлять остальными источниками света в группе; RX – ведомой с синхронизацией по радиоканалу; S1 и S2 – световая ловушка.

Вспышка, оснащённая подсветкой автофокуса будет светить специальной сеткой во время фокусировки в тёмных условиях. Наводиться на резкость с этой функцией на порядок проще и нет, вы не увидите этой сетки на кадре – она заблаговременно отключается.

Почти все вспышки имеют возможность контролировать степень рассеяность света. Если при съёмке на широкоугольный объектив вам нужен максимально рассеянный свет, что бы покрыть весь кадр, то для телеобъектива нужен сконцентрированный пучок, позволяющий осветить даже далеко находящийся объект. Этот параметр на камерах измеряется в миллиметрах и соответствует фокусным расстояниям объективов. Обычно вспышки зуммируются от 17 до 105 мм. Более продвинутые модели автоматически подстраиваются под установленный объектив, а простые требуют ручной настройки этого параметра.

Наличие призмы для съёмки на широком угле.

Часто для съёмки на широких объективах порядка 14 мм нужно вручную вытащить призму.

В этой статье я постарался расписать основные параметры накамерных вспышек, характерные для любой модели любого производителя. Надеюсь, она поможет разобраться с теорией, а уже в следующей части покажу примеры использования этих источников света. Не бойтесь экспериментировать и до новых встреч!

Синхронизация вспышек

Современные электронные фотовспышки способны самостоятельно определять мощность импульса и необходимые настройки для того, чтобы фотограф мог получить качественные изображения объекта вне зависимости от условий съемки. Но на результаты съемки в значительной степени влияет так называемая синхронизация фотовспышки, которая требуется для оптимального взаимодействия самой вспышки и затвора камеры.

Читайте так же:
Как правильно отрегулировать домашний барометр

Фотовспышка должна работать синхронно с фотоаппаратом, в противном случае использование вспышки может сработать против самого фотографа. В этом плане важно, чтобы вспышка поддерживала сразу несколько режимов синхронизации с камерой. Это позволяет расширить область применения фотовспышки, открывая возможности фотографу для уменьшения или увеличения различных эффектов на изображении.

Обычная синхронизация вспышки подразумевает под собой то, что все поле кадра остается открытым в момент срабатывания вспышки, то есть затвор фотоаппарата полностью открыт. Нормальная скорость синхронизации со вспышкой составляет для современных моделей 1/250 -1/90 сек. К сожалению, использование обычной синхронизации зачастую не дает желаемых результатов, поскольку выдержка оказывается слишком короткой для того, чтобы удалось качественно проработать задний план. Поэтому электронные вспышки имеют несколько режимов синхронизации.

Синхронизация вспышки при короткой выдержке или «высокоскоростная» FP-синхронизация используется в условиях съемки с недостаточным освещением, либо для дополнительной подсветки, убирающей на снимке тени. Как правило, в этих случаях на цифровом фотоаппарате выставляется короткая выдержка.

Однако использование вспышки на очень коротких выдержках не дает желаемого результата в силу специфических особенностей работы механических затворов. Ведь при коротких выдержках затвор фотоаппарата открывает световым лучам лишь щель, которая пробегает по длине кадра. Соответственно, если время импульса вспышки меньше, чем время, необходимое затвору камеры для открытия кадра, то светом от вспышки будет освещена только часть, а не весь кадр. Именно для этих ситуаций и нужен режим FP-синхронизации.

При работе в режиме «высокоскоростной» синхронизации вспышка излучает короткие световые импульсы небольшой мощности, равномерно засвечивая кадр при движении шторок затвора фотокамеры. Такая синхронизация оптимально подходит для съемки любых сюжетов, характеризующимися короткими выдержками.

Другой режим синхронизации вспышки – это синхронизация с длинными выдержками («медленная» синхронизация). Она актуальна тогда, когда фотографу необходимо в условиях недостаточной освещенности подсветить объекты переднего плана и одновременно качественно проработать общий фон. Например, «медленная» синхронизация часто применяется для получения эффектных портретов на фоне ночных городских улиц.

Для того, чтобы обеспечить хорошую резкость получаемых изображений при работе в этом режиме синхронизации фотографу понадобится штатив или неподвижный упор для камеры. Фотоаппарат переводится в режим длительной выдержки, а вспышке устанавливается замедленная синхронизация. В результате, камера использует медленную скорость затвора для корректного отображения деталей заднего плана изображения, который не освещен вспышкой. В этом случае вспышка излучает импульс в конце срабатывания затвора.

Подобный режим синхронизации фотовспышки не подходит для съемки движущихся объектов, но зато становится оптимальным решением при съемке неподвижных предметов в условиях сумеречного или низкого освещения.

Электронные фотовспышки также могут поддерживать режимы синхронизации по передней или задней шторке затвора камеры. Как известно, механические фокальные затворы, используемые в фотокамерах, имеют конструкцию с двумя шторками. При экспонировании сначала первая шторка открывает кадр, после чего вторая шторка его закрывает. На коротких выдержках обе шторки уже двигаются одновременно. Они открывают для светового потока только небольшую полосу кадра на время, равное установленной выдержки. Соответственно, в режиме синхронизации по задней шторке вспышка срабатывает именно в тот момент, когда она достигает конца кадра.

Этот режим может использоваться при съемках движущихся объектов, ведь благодаря ему на изображении возникает достаточно интересный эффект. Помимо самого объекта на фотографии отображается и его немного смазанный след, который направлен в сторону движения самого объекта. Такой след получается в результате экспонирования за то время, что прошло после светового импульса вспышки. В режиме синхронизации по передней шторке вспышка сработает в начале выдержки, то есть сразу после открытия шторки. В этом случае можно получить изображение движущегося объекта с полосой, напоминающей ореол.

Таким образом, современные фотовспышки обладают несколькими режимами синхронизации с затвором фотокамеры — «медленная» синхронизация, синхронизация по задней или передней шторке, а также высокоскоростная синхронизация FP. Применение того или иного режима обуславливается конкретными условиями съемки и теми результатами, которые хочет видеть сам фотограф на изображении.

Источник: Фотокомок.ру – фототехника и фотография (при копировании или цитировании активная ссылка обязательна)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector