0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

5 схем сборки самодельного светорегулятора

5 схем сборки самодельного светорегулятора

Очень часто возникает потребность в регулировании яркости лампы в пределах определенной величины, это как правило, от 20% до 100%. Выставлять яркость меньше не имеет смысла, поскольку большинство ламп просто не работают в таком режиме или дают мизерное количество света, которого хватит только на свечение лампы, но при этом ничего освещать она не будет. Можно пойти в магазин и купить готовый прибор, но сейчас цены на данные устройства очень завышены и не соответствуют получаемому изделию. Так как мы с вами мастера на все руки, то будем делать данные девайсы самостоятельно. Сегодня рассмотрим несколько схем, благодаря которым вам станет понятно, как сделать диммер на 12 В и 220 В своими руками.

На симисторе

Для начало рассмотрим схему светорегулятора, работающего от сети 220 Вольт. Данный тип устройств работает по принципу фазового смещения открывания силового ключа. Сердцем диммера является RC цепочка. Узел формирования управляющего импульса, в качестве которого выступает симметричный динистор. И собственно, сам силовой ключ, управляющий нагрузкой — симистор.

Диммер на симисторе

Рассмотрим работу схемы. Резисторы R1 и R2 образуют делитель напряжения. Так как R1 является переменным, то с его помощью меняется напряжение в цепочке R2C1. Динистор DB3 включен в точку между ними и при достижении напряжения порога его открывания на конденсаторе C1 он срабатывает и подает импульс на силовой ключ — симистор VS1. Он открывается и пропускает через себя ток, тем самым на выходе мы получаем напряжение. От положения регулятора зависит, какая часть волны пойдет на лампу. Чем быстрее заряжается конденсатор, тем быстрее открывается ключ, и большая часть волны и мощности пойдет на нагрузку. Таким образом, схема буквально отрезает часть синусоиды. Ниже представлен график работы устройства.

Фазное управление

Значение (t*) — это время, за которое конденсатор заряжается до порога открывания силового элемента. Эта схема диммера проста и легко повторяется на практике. Лучше всего она работает на лампах накаливания, из-за того что спираль в лампе имеет инертность, а вот со светодиодными и иными лампами могут возникнуть проблемы, поэтому необходимо перед окончательной установкой проверить работоспособность схемы конкретно на ваших потребителях. Рекомендуем просмотреть предоставленное ниже видео, в котором наглядно показывается, как сделать светорегулятор на симисторе:

На тиристорах

Вы можете не покупать симистор, а сделать простой светорегулятор на тиристорах, которые можно легко достать из старой неработающей аппаратуры и плат, по типу телевизоров, магнитофонов и т.д. Схема немного отличается от предыдущей, тем что для каждой полуволны стоит свой тиристор, и тем самым свой динистор для каждого ключа.

Тиристорный регулятор

Кратко опишем процесс регулирования. Во время положительной полуволны емкость C1 заряжается через цепочку R5, R4, R3. При достижении порога открывания динистора V3, ток через него попадает на управляющий электрод тиристора V1. Ключ открывается, пропуская положительную полуволну через себя. При отрицательной фазе тиристор запирается, а процесс повторяется для другого ключа V2 и конденсатора С2, который заряжается через цепочку R1, R2, R5.

Фазные регуляторы — димеры можно использовать не только для регулировки яркости ламп накаливания, а также для регулирования скорости вращения вентилятора вытяжки, можно сделать приставку для паяльника и регулировать таким образом температуру его жала для улучшения качества пайки.

Видео инструкция по сборке:

Важно! Данный способ регулирования не подходит для работы с люминесцентными, экономными компактными и светодиодными лампами из-за особенностей их работы.

Конденсаторный светорегулятор

На ряду с плавными регуляторами в быту получили распространение конденсаторные диммеры. Работа данного девайса основана на зависимости передачи переменного тока от величины емкости. Чем больше емкость конденсатора, тем больший ток он пропускает через себя. Таким образом, с помощью конденсатора можно уменьшить мощность, подаваемую на лампу, однако этот способ не позволяет производить регулировку плавно. Данный вид самодельного диммера может быть довольно компактным, все зависит от требуемых параметров яркости, а следовательно, от емкости конденсатора, которая связана с его размерами.

Схема с гасящим конденсатором

Как видно из схемы, есть три положения: 100% мощности, через гасящий конденсатор (уменьшение мощности) и выключено. В устройстве используется неполярный бумажный конденсатор, который можно раздобыть в старой технике. О том, как правильно выпаивать радиодетали из плат мы рассказали в соответствующей статье!

Ниже приведена таблица, связывающая емкость и напряжение на лампе.

Таблица выбора емкости конденсатора

На основе этой схемы можно самому собрать простой ночник и с помощью тумблера или переключателя управлять яркостью светильника.

На микросхеме

Для регулирования мощностью, подаваемой на нагрузку в цепях постоянного тока 12 Вольт, часто используют интегральные стабилизаторы — КРЕНки. Применение микросхемы упрощает разработку и монтаж устройств за счет малого числа радиодеталей. Такой самодельный диммер прост в настройке и обладает некоторыми функциями защиты.

Регулятор на КРЕН

С помощью переменного резистора R2 создается опорное напряжение на управляющем электроде микросхемы. В зависимости от выставленного параметра регулируется значение на выходе от максимума в 12 В до минимума в десятые доли Вольта. Недостаток данных регуляторов в малом КПД и максимально возможной мощности подключаемой нагрузки, в следствие этого, есть необходимость установки дополнительного радиатора для хорошего охлаждения КРЕН, поскольку часть энергии выделяется на нем в виде тепла. Однако, это идеальный вариант для маломощных схем постоянного тока и низкого напряжения, за счет своей простоты и универсальности.

Данный регулятор освещения был повторен мной и отлично справлялся со светодиодной лентой 12 Вольт, длиною три метра и давал возможность регулировать яркость светодиодов от ноля до максимума.

Отличный вариант — диммер на интегральном таймере 555, который управляет силовым ключом КТ819Г, короткими ШИМ импульсами. Установив высокую частоту работы схемы, можно избавиться от мерцания, которое часто возникает из-за дешевых покупных диммеров и вызывает быструю усталость и раздражение глаз у человека.

Читайте так же:
Как регулировать кухонные петли для навесных шкафов

В таком режиме транзистор пребывает в двух состояниях: полностью открыт или полностью закрыт. Падение напряжения на нем минимальны, что позволяет подключать более мощную нагрузку и использовать схему с малым радиатором, что по сравнению с предыдущей схемой с регулятором на КРЕН, выгодно отличается по габаритам и экономичности.

ШИМ регулятор

Напоследок рекомендуем просмотреть еще один мастер-класс, в котором показано, как можно сделать регулятор освещения для светодиодов:

Вот собственно и все идеи сборки простого светорегулятора в домашних условиях. Теперь вы знаете, как сделать диммер своими руками на 220 и 12В.

LED подсветка монитора своими руками


Время незаметно идет и казалось бы недавно купленная техника уже выходит из строя. Так, отработав свои 10000 часов, приказали долго жить лампы моего монитора (AOC 2216Sa). Вначале подсветка стала включаться не с первого раза (после включения монитора подсветка выключалась через несколько секунд), что решалось повторным включением/выключением монитора, со временем монитор приходилось выключать/выключать уже 3 раза, потом 5, потом 10 и в какой-то момент он не мог включить подсветку уже вне зависимости от числа попыток включения. Извлеченные на свет божий лампы оказались с почерневшими краями и законно отправились в утиль. Попытка поставить лампы на замену (были куплены новые лампы подходящего размера) успехом не увенчалась (несколько раз монитор смог включить подсветку, но быстро опять ушел в режим включился-выключился) и выяснение причин в чем может быть проблема уже в электронике монитора привели меня к мысли о том что проще будет собрать собственную подсветку монитора на светодиодах чем ремонтировать имеющуюся схему инвертора для CCFL ламп, тем более в сети уже попадались статьи показывающие принципиальную возможность такой замены.

Разбираем монитор

На тему разборки монитора уже написано немало статей, все мониторы очень похожи между собой, поэтому вкратце:
1. Откручиваем крепление поставки монитора и единственный болтик внизу, который придерживает заднюю стенку корпуса

2. В низу корпуса есть два пазика между передней и задней частью корпуса, в один из которых засовываем плоскую отвертку и начинаем снимать крышку с защелок по всему периметру монитора (просто проворачивая аккуратно отвертку вокруг своей оси и приподнимая этим крышку корпуса). Излишних усилий прилагать не надо, но тяжело снимается с защелок корпус только первый раз (за время ремонта я его открывал много раз, поэтому защелки стали сниматься со временем гораздо легче).
3. Нам открывается вид на монтаж внутренней металлической рамы в передней части корпуса:

Вынимаем из защелок плату с кнопками, вынимаем (в моем случае) разъем динамиков и отогнув две защелки внизу вынимаем внутренний металлический корпус.
4. Слева виднеются 4 провода подключения ламп подсветки. Вынимаем их слегка сдавливая, т.к. для предотвращения выпадения разъем сделан в виде маленькой прищепки. Так же вынимаем широкий шлейф идущий к матрице (вверху монитора), сдавливая его разъем по бокам (т.к. в разъеме боковые защелки, хотя при первом взгляде на разъем это и не очевидно):

5. Теперь необходимо разобрать «сендвич» содержащий саму матрицу и подсветку:

По периметру находятся защелки, которые открываются легким поддеванием той же плоской отверткой. Вначале снимается металлическая рама придерживающая матрицу, после чего можно открутить три меленьких болтика (обычная крестиковая отвертка не подойдет ввиду их миниатюрного размера, понадобится особо мелкая) удерживающих плату управления матрицей и матрицу можно снять (лучше всего положить монитор на твердую поверхность, например стол, покрытую тканью матрицей вниз, открутив плату управления положить ее на стол развернув через торец монитора и просто внять корпус с подсветкой подняв его вертикально вверх, а матрица так и останется лежать на столе. Ее можно накрыть чем-то чтобы не пылилась, а собирать точно в обратном порядке — т.е. накрыть лежащую на столе матрицу собранным корпусом с подсветкой, обернуть через торец шлейф к плате управления и прикрутив плату управления аккуратно поднять блок в собранном виде).
Получается матрица отдельно:

И блок с подсветкой отдельно:

Блок с подсветкой разбирается аналогично, только вместо металлической рамы, подсветка удерживается пластмассовой рамкой, которая одновременно позиционирует оргстекло, используемое для рассеивания света подсветки. Большинство защелок находятся по бокам и похожи на те что удерживали металлическую раму матрицы (открываются поддеванием плоской отверткой), но по бокам есть несколько защелок открывающихся «вовнутрь» (на них отверткой нужно надавить, чтобы защелки ушли во внутрь корпуса).
Вначале я запоминал положение всех снимаемых частей, но потом выяснилось, что «неправильно» их собрать не получится и даже если детали выглядят абсолютно симметричными расстояния между защелками на разных сторонах металлической рамы и фиксирующие выступы по бокам пластиковой рамы удерживающей подсветку не дадут собрать их «неправильно».
Вот собственно и все — мы разобрали монитор.

Подсветка светодиодной лентой

Вначале решено было делать подсветку из светодиодной ленты с белыми светодиодами 3528 — 120 светодиодов на метр. Первое что оказалось — ширина ленты 9 мм, а ширина ламп подсветки (и посадочного места под ленту) — 7 мм (на самом деле бывают лампы подсветки двух стандартов — 9 мм и 7 мм, но в моем случае были 7 мм). Поэтому, после осмотра ленты, было принято решение обрезать по 1 мм с каждого края ленты, т.к. это не задевало токопроводящих дорожек на лицевой части ленты (а на обратной вдоль всей ленты идут две широкие жилы питания, которые от уменьшения на 1 мм своих свойств на длине подсветки 475 мм не потеряют, т.к. ток будет небольшой). Сказано — сделано:

Точно так же аккуратно светодиодная лента обрезается по всей длине (на фотографии пример того что было до и что стало после обрезки).
Нам понадобится две полоски ленты по 475 мм (19 сегментов по 3 светодиода в полоске).
Хотелось чтобы подсветка монитора работала так же как и штатная (т.е. включалась и выключалась контроллером монитора), а вот яркость я хотел регулировать «вручную», как на старых CRT мониторах, т.к. это часто используемая функция и лазить по экранным меню каждый раз нажимая несколько клавиш мне надоело (в моем мониторе клавиши вправо-влево регулируют не режимы монитора, а громкость встроенных динамиков, так что режимы каждый раз приходилось менять через меню). Для этого был найден в сети мануал на мой монитор (кому пригодится — прилагается в конце статьи) и на странице с Power Board по схеме найдены +12V, On, Dim и GND которые нас интересуют.

On — сигнал с платы управления на включение подсветки (+5V)
Dim — ШИМ управление яркостью подсветки
+12V оказались далеко не 12, а где-то 16V без нагрузки подсветкой и где-то 13.67V с под нагрузкой
Так же было решено никаких ШИМ регулировок яркости подсветки не делать, а запитывать подсветку постоянным током (заодно решается вопрос с тем, что у некоторых мониторов ШИМ подсветки работает на не очень высокой частоте и у некоторых от этого чуть больше устают глаза). В моем мониторе частота «родного» ШИМ была 240 Гц.
Дальше на плате были найдены контакты на которые подается сигнал On (помечен красным) и +12V на блок инвертора (перемычка которую необходимо выпаять чтобы обесточить блок инвертора помечена зеленым). (фотографию можно увеличить чтобы увидеть пометки):

В качестве основы схемы управления был взять линейный регулятор LM2941 в основном за то, что при токе до 1А он имел отдельный вывод управления On/Off, который предполагалось использовать для управления включением/выключением подсветки сигналом On с платы управления монитора. Правда в LM2941 этот сигнал инвертированный (т.е. на выходе есть напряжение когда на входе On/Off — нулевой потенциал), так что пришлось собрать инвертор на одном транзисторе для согласования прямого сигнала On с платы управления и инвертированного входа LM2941. Никаких других излишеств схема не содержит:

Расчет выходного напряжения для LM2941 производится по формуле:

Читайте так же:
Регулировка напряжения постоянного тока своими руками

Vout = Vref * (R1+R2)/R1

где Vref = 1.275V, R1 в формуле соответствует R1 на схеме, а R2 в формуле соответствует паре резисторов RV1+RV2 на схеме (введено два резистора для более плавной регулировки яркости и сокращения диапазона регулируемых переменным резистором RV1 напряжений).
В качестве R1 я взял 1кОм, а подбор R2 осуществляется по формуле:

Максимальное необходимое нам напряжение для ленты — 13В (я взял четь больше чем номинальные 12В чтобы не терять в яркости, а лента такой легкое перенапряжение переживет). Т.е. максимальное значение R2 = 1000*(13/1.275-1) = 9.91кОм. Минимальное напряжение при котором лента еще хоть как-то светится — около 7 вольт, т.е. минимальное значение R2 = 1000*(7/1.275-1) = 4.49кОм. R2 у нас состоит из переменного резистора RV1 и многооборотного подстроечного резистора RV2. Сопротивление RV1 получаем 9.91кОм — 4.49кОм = 5.42кОм (выбираем ближайшее значение RV1 — 5.1кОм), а RV2 выставляем примерно в 9.91-5.1 = 4.81кОм (на самом деле лучше всего вначале собрать схему, выставить максимальное сопротивление RV1 и измеряя напряжение на выходе LM2941 выставить сопротивление RV2 таким чтобы на выходе было нужное максимальное напряжение (в нашем случае около 13В).

Монтаж светодиодной ленты

Поскольку после обрезания ленты на 1 мм по торцам ленты оголились жилы питания, на корпус в месте где будет клеиться лента я наклеил изоленту (к сожалению не синюю а черную). Поверх клеится лента (хорошо прогревать поверхность феном, т.к. к теплой поверхности скотч клеится гораздо лучше):

Дальше монтируются задняя пленка, оргстекло и светофильтры которые лежали поверх оргстекла. По краям я подпер ленту кусочками стирательной резинки (чтобы края на скотче не отходили):

После чего блок подсветки собирается в обратном порядке, устанавливается на место матрица, провода подсветки выводятся наружу.
Схема собиралась на макетке (ввиду простоты решил плату не разводить), крепилась на болтиках через отверстия в задней стенке металлического корпуса монитора:


Питание и сигнал управления On заводились с платы блока питания:

Расчетная мощность, выделяемая на LM2941 рассчитывается по формуле:

Pd = (Vin-Vout)*Iout +Vin*Ignd

  • Используется стандартная светодиодная лента
  • Простая плата управления
  • Недостаточная яркость подсветки при ярком дневном свете (монитор стоит напротив окна)
  • Светодиоды в ленте расположены недостаточно часто, поэтому видны небольшие световые конусы от каждого отдельного светодиода возле верхней и нижней кромок монитора
  • Баланс белого немного нарушен и уходит слегка в зеленоватые оттенки (скорее всего решается регулировками баланса белого либо самого монитора либо видеокарты)
Регулировка яркости с помощью ШИМ

Для тех хаброжителей, которые в отличие от меня не вспоминают с ностальгией аналоговые ручки управления яркостью и контрастностью на старых ЭЛТ мониторах можно сделать управление от штатного ШИМ генерируемого платой управления монитором без выведения каких-либо дополнительных органов управления наружу (без сверления корпуса монитора). Для этого достаточно собрать на двух транзисторах схему И-НЕ на входе On/Off регулятора и убрать регулировку яркости на выходе (выставить выходное напряжение постоянным в 12-13В). Модифицированная схема:

Сопротивление подстроечного резистора RV2 для напряжения 13В должно быть в районе 9.9кОм (но лучше выставить точно при включенном регуляторе)

Более плотная LED подсветка
  • Достаточно большая яркость (возможно сравнимая, а возможно даже превосходящая яркость старой CCTL подсвтеки)
  • Отсутствие световых конусов по краям монитора от индивидуальных светодиодов (светодиоды расположены достаточно часто и подсветка равномерная)
  • Все еще простая и дешевая плата управления
  • Никак не решился вопрос с балансом белого, уходящим в зеленоватые тона
  • LM2941 хоть и с большим радиатором, но греется и греет все внутри корпуса
Читайте так же:
Студийный свет синхронизация вспышки
Плата управления на основе Step-down регулятора

Для устранения проблемы нагрева решено было собрать регулятор яркости на базе Step-down регулятора напряжения (в моем случае был выбран LM2576 с током до 3А). Он так же имеет инвертированный вход управления On/Off, поэтому для согласования присутствует такой же инвертор на одном транзисторе:

Катушка L1 влияет на КПД преобразователя и должна быть 100-220 мкГ для тока в нагрузке около 1.2-3А. Напряжение на выходе рассчитывается по формуле:

Светодиодный ночник с регулятором яркости своими руками

Светодиодный ночник с регулятором яркости

Ночник из светодиодной ленты и блока питания

Ночник из светодиодной ленты и блока питания

Вещица оказалась весьма полезной. Отдал на эксплуатацию супруге, и спустя некоторое время получил отзыв 🙂 Оказалось, что ночником трудно попасть в розетку в полной темноте, а если это все-таки удалось, то он непременно ослепит и нарушит весь сон! 🙂

Ночник из светодиодной ленты и блока питания работает

Ночник из светодиодной ленты и блока питания включен в сеть

Исходя из этого опыта решил изготовить новую модель ночного светильника с регулятором яркости и встроенным выключателем, чтобы была возможность всегда оставлять ночник в розетке.

Видео о получившемся ночнике с регулятором яркости.

Далее в этой статье я покажу процесс изготовления ночника с регулятором яркости из блока питания на 12 вольт и светодиодной ленты SMD 5050, а также приведу принципиальную схему регулятора яркости на транзисторе КТ-819.

Материалы

Компоненты для изготовления ночника

Компоненты для изготовления ночника с регулятором яркости

Для изготовления ночника с регулятором яркости нам потребуются следующие материалы:

  • Блок питания 12 вольт (выходной ток не менее 0,5 ампер)
  • Светодиодная лента SMD 5050
  • Транзистор КТ-819 с любым индексом или его аналог
  • Переменный резистор 100 кОм с выключателем
  • Резисторы: 1 кОм — 1шт, 10 кОм — 2 шт
  • Соединительные провода
  • Секундный супер клей
  • Термоклей

Как обычно перед началом сборки не забываем удостовериться в работоспособности всех комплектующих. Как проверить транзистор можно прочитать в этой заметке

Характеристики блока питания можно узнать на этикетке или штампе изготовителя. На фото блок питания с выходным напряжением 12 вольт и максимальной силой тока 1 ампер.

Характеристики импульсного блока питания 12В 1А

Характеристики импульсного блока питания 12В 1А

Светодиодную ленту нужно нарезать сегментами по 3 диода на каждом. Обычно на лентах есть разметка, по которой можно ориентироваться.

Начинаем сборку

А точнее разборку блока питания В крышке корпуса (слева на фото) высверливаем отверстие для установки переменного резистора.

Разобранный блок питания

Разобранный блок питания

Устанавливаем переменный резистор в крышку блока питания. Резистор можно зафиксировать при помощи термоклея (родной гайки от этого резистора не было, почему то не продают их в магазине вместе с резистором)

Выносной конденсатор блока питания

Выносной конденсатор блока питания

В данной модели блока питания установке резистора мешал конденсатор. Пришлось разместить его в свободном пространстве корпуса и соединить с печатной платой при помощи провода ПВС с сечением 0,5 мм 2

Переменный резистор в крышке корпуса блока питания

Переменный резистор в крышке корпуса блока питания

Попробовав закрыть крышку блока питания выяснилось, что также мешают пара диодов.

Удалено 2 диода из мостика блока питания

Удалено 2 диода из мостика блока питания

Пришлось переместить их на обратную сторону печатной платы.

Перенос части диодного мостика БП на обратную сторону платы

Перенос части диодного мостика БП на обратную сторону платы

Теперь подыскиваем свободное место для транзистора.

Транзистор КТ-819Г установлен в корпус блока питания

Транзистор КТ-819Г установлен в корпус блока питания

Крепим транзистор к крышке при помощи болта и гайки.

Крепление транзистора КТ-819Г на крышке корпуса БП

Крепление транзистора КТ-819Г на крышке корпуса БП

Собираем регулятор яркости светодиодной ленты по следующей схеме. Эту же схему я использовал в регуляторе яркости на подсветке компьютерного стола.

Схема регулятора яркости для светодиодной ленты

Схема регулятора яркости для светодиодной ленты

Все постоянные резисторы зафиксированы на крышке корпуса при помощи термоклея. На ножки транзистора добавлена изоляция из термоусадочных трубок.

Регулятор напряжения и тока на транзисторе КТ-819Г

Регулятор напряжения и тока на транзисторе КТ-819Г

На данном этапе можно собрать блок питания в корпус и проверить работу регулятора яркости на одном сегменте светодиодной ленты. Вот так лента светит на минимальной яркости.

Проверка регулятора напряжения - минимальный ток на выходе

Проверка регулятора напряжения — минимальный ток на выходе

А теперь выкручиваем резистор до упора и получаем максимальную яркость свечения.

Полная яркость светодиодной ленты

Полная яркость светодиодной ленты

Регулятор работает как положено. Можно двигаться дальше.

Рукоятку для вращения потенциометра можно изготовить из обычных крышек от сока или минеральной воды.

Крышка в качестве основы для рукоятки переменного резистора

Крышка от сока в качестве основы для рукоятки переменного резистора

Крышка прекрасно крепится к резистору при помощи термоклея.

Крышка приклеена к резистору при помощи термоклея

Крышка приклеена к резистору при помощи термоклея

А сверху можно надеть крышку с большим диаметром. Я выбрал белый цвет для того, чтобы в темноте легче было найти регулятор.

Вторая крышка сверху на регуляторе уровня яркости

Вторая крышка сверху на регуляторе уровня яркости

Теперь приступаем к установке сегментов светодиодной ленты на боковых поверхностях блока питания. Ленты лучше крепить при помощи секундного суперклея, чем на двусторонний скотч, с которым обычно они поставляются.

Сегменты светодиодной ленты smd 5050 на боковой поверхности блока питания

Сегменты светодиодной ленты smd 5050 на боковой поверхности блока питания

Припаиваем провода от блока питания к сегментам ленты в соответствии с полярностью.

Светодиодная лента припаяна к выходу с блока питания

Светодиодная лента припаяна к выходу с блока питания

Все то же самое на второй стороне корпуса.

Светодиоды на второй стороне ночника

Светодиоды на второй стороне ночника

Когда все провода припаяны к сегментам светодиодной ленты, можно проверить работоспособность устройства. Также провода и места пайки можно покрыть тонким слоем термоклея для безопасности и лучшей фиксации.

Светодиодный ночник на полной яркости

Светодиодный ночник на полной яркости

Вот так работает регулируемый ночник в режиме полной яркости.

Читайте так же:
Регулировка пластиковых окон перевод на зиму

Светодиодный ночник с регулятором яркости

Светодиодный ночник с регулятором яркости

Светодиодный ночник на минимальной яркости

Светодиодный ночник на минимальной яркости

Итак, мы получили компактный ночник из светодиодной ленты с регулятором яркости и питанием от сети 220 вольт.

Гайд по адресной светодиодной ленте

Данный гайд посвящен адресной светодиодной ленте применительно к использованию с микроконтроллерами (Arduino, esp8266). Рассмотрены базовые понятия, подключение, частые ошибки и места для покупки.

КУПИТЬ АДРЕСНУЮ ЛЕНТУ

Лента WS2812

  • Giant4 30 LED
  • Giant4 60 LED
  • Giant4 144 LED
  • AliExpress
  • AliExpress
Гибкий профиль

  • AliExpress
  • AliExpress
  • AliExpress
Гирлянда

  • Giant4 (РФ)
  • Giant4 (РФ)
  • AliExpress
Полоски

  • AliExpress
  • AliExpress
Кольца

  • AliExpress
  • AliExpress
  • AliExpress
Матрицы

  • Giant4 16×16
  • Giant4 32×8
  • AliExpress
  • AliExpress
  • Black PCB / White PCB — цвет подложки ленты, чёрная / белая
  • 1m/5m — длина ленты в метрах
  • 30/60/74/96/100/144 — количество светодиодов на 1 метр ленты
  • IPXX – влагозащита
    • IP30 лента без влагозащиты
    • IP65 лента покрыта силиконом
    • IP67 лента полностью в силиконовом коробе

    ТИПЫ АДРЕСНЫХ ЛЕНТ

    Сейчас появилось несколько разновидностей адресных светодиодных лент, они основаны на разных светодиодах. Рассмотрим линейку китайских чипов с названием WS28XX.

    ЧипНапряжениеСветодиодов на чипКол-во дата-входовКупить в РФ
    WS281112-24V3130 led, 60 led
    WS28123.5-5.3V1130 led, 60 led, 144 led
    WS28133.5-5.3V12 (дублирующий)30 led, 60 led
    WS28159-13.5V12 (дублирующий)30 led, 60 led
    WS281812/24V32 (дублирующий)60 led

    У двухпиновых лент из линейки WS28XX достаточно подключить к контроллеру только пин DI, пин BI подключать не нужно. При соединении кусков ленты нужно соединять все пины!

    blank

    WS2811 (WS2818) и WS2812

    Сейчас популярны два вида ленты: на чипах WS2812b и WS2811 (и новая WS2818). В чём их разница? Чип WS2812 размещён внутри светодиода, таким образом один чип управляет цветом одного диода, а питание ленты – 5 Вольт. Чип WS2811 и WS2818 размещён отдельно и от него питаются сразу 3 светодиода, таком образом можно управлять цветом только сегментами по 3 диода в каждом. А вот напряжение питания у таких лент составляет 12-24 Вольта!

    ЧТО ТАКОЕ АДРЕСНАЯ ЛЕНТА

    Итак, данный гайд посвящен адресной светодиодной ленте, я решил сделать его познавательным и подробным, поэтому дойдя до пункта “типичные ошибки и неисправности” вы сможете диагностировать и успешно излечить косорукость сборки даже не читая вышеупомянутого пункта. Что такое адресная лента? Рассмотрим эволюцию светодиодных лент.

    Обычная светодиодная лента представляет собой ленту с напаянными светодиодами и резисторами, на питание имеет два провода: плюс и минус. Напряжение бывает разное: 5 и 12 вольт постоянки и 220 переменки. Да, в розетку. Для 5 и 12 вольтовых лент нужно использовать блоки питания. Светит такая лента одним цветом, которой зависит от светодиодов.

    RGB светодиодная лента. На этой ленте стоят ргб (читай эргэбэ – Рэд Грин Блю) светодиоды. Такой светодиод имеет уже 4 выхода, один общий +12 (анод), и три минуса (катода) на каждый цвет, т.е. внутри одного светодиода находится три светодиода разных цветов. Соответственно такие же выходы имеет и лента: 12, G, R, B. Подавая питание на общий 12 и любой из цветов, мы включаем этот цвет. Подадим на все три – получим белый, зелёный и красный дадут жёлтый, и так далее. Для таких лент существуют контроллеры с пультами, типичный контроллер представляет собой три полевых транзистора на каждый цвет и микроконтроллер, который управляет транзисторами, таким образом давая возможность включить любой цвет. И, как вы уже поняли, да, управлять такой лентой с ардуино очень просто. Берем три полевика, и ШИМим их analogWrit’ом, изи бризи.

    Адресная светодиодная лента, вершина эволюции лент. Представляет собой ленту из адресных диодов, один такой светодиод состоит из RGB светодиода и контроллера. Да, внутри светодиода уже находится контроллер с тремя транзисторными выходами! Внутри каждого! Ну дают китайцы блэт! Благодаря такой начинке у нас есть возможность управлять цветом (то бишь яркостью r g b) любого светодиода в ленте и создавать потрясающие эффекты. Адресная лента может иметь 3-4 контакта для подключения, два из них всегда питание (5V и GND например), и остальные (один или два) – логические, для управления.

    Лента “умная” и управляется по специальному цифровому протоколу. Это означает, что если просто воткнуть в ленту питание не произойдет ровным счётом ничего, то есть проверить ленту без управляющего контроллера нельзя. Если вы потрогаете цифровой вход ленты, то скорее всего несколько светодиодов загорятся случайными цветами, потому что вы вносите случайные помехи, которые воспринимаются контроллерами диодов как команды. Для управления лентой используются готовые контроллеры, но гораздо интереснее рулить лентой вручную, используя, например, платформу ардуино, для чего ленту нужно правильно подключить. И вот тут есть несколько критических моментов:

    ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ

    1) Команды в ленте передаются от диода к диоду, паровозиком. У ленты есть начало и конец, направление движение команд на некоторых моделях указано стрелочками. Для примера рассмотрим ws2812b, у нее три контакта. Два на питание, а вот третий в начале ленты называется DI (digital input), а в конце – DO (digital output). Лента принимает команды в контакт DI! Контакт DO нужен для подключения дополнительных кусков ленты или соединения матриц.

    blank

    2) Если в схеме возможна ситуация, при которой на ленту не будет подаваться питание 5V, но будет отправляться сигнал с микроконтроллера – лента начнёт питаться от дата-пина. В этом случае может сгореть как первый светодиод в ленте, так и пин контроллера. Не испытывайте удачу, поставьте резистор с сопротивлением 200-500 Ом. Точность резистора? Любая. Мощность резистора? Любая. Да, даже 1/4.

    blank

    2.1) Если между лентой и контроллером (Arduino) большое расстояние, т.е. длинные провода (длиннее 50 см), то сигнальный провод и землю нужно скрутить в косичку для защиты от наводок, так как протокол связи у ленты достаточно скоростной (800 кГц), на него сильно влияют внешние наводки, а экранирование земляной скруткой поможет этого избежать. Без этого может наблюдаться такая картина: лента не работает до тех пор, пока не коснёшься рукой сигнального провода.

    blank

    2.2) При подключении ленты к микроконтроллерам с 3.3V логикой (esp8266, ESP32, STM32) появляется проблема: лента питается от 5V, а сигнал получает 3.3V. В даташите указана максимальная разница между питанием и управляющим сигналом, если её превысить – лента не будет работать или будет работать нестабильно, с артефактами. Для исправления ситуации можно:

    • Уменьшить напряжение питания ленты до 4.5V, “промышленные” (металлические в дырочку) блоки питания позволяют это сделать (у них есть крутилка).
    • Поставить конвертер (преобразователь) уровней с 3.3 до 5V на управляющий сигнал.
    • Также я придумал весьма грязный трюк с диодом: первый светодиод в ленте можно запитать от более низкого напряжения через любой кремниевый диод (например 1N4007), а остальные – как обычно. На диоде падает около 0.6V, таким образом сигнал пройдёт через ступеньку повышения 3.3-4.4-5.0V и всё будет работать стабильно. Для этого нужно аккуратно вырезать кусочек дорожки 5V между 1 и 2 светодиодом, подключить питание ко второму, и диодом оттуда же – на первый (см. схему #1 справа).
    • Ещё один способ с нашего форума: диодом “приподнять” землю самого микроконтроллера на те же 0,6V. Для этого диод ставится между GND питания катодом и GND микроконтроллера анодом (см. схему #2 справа).

    3) Самый важный пункт, который почему то все игнорируют: цифровой сигнал ходит по двум проводам, поэтому для его передачи одного провода от ардуины мало. Какой второй? Земля GND. Как? Контакт ленты GND и пин GND Ардуино (любой из имеющихся) должны быть обязательно соединены. Смотрим два примера.

    blank

    blank

    4) Питание. Один цвет одного светодиода при максимальной яркости кушает 12 миллиампер. В одном светодиоде три цвета, итого

    36 мА на диод. Пусть у вас есть метр ленты с плотностью 60 диод/метр, тогда 60*36 = 2.1 Ампера при максимальной яркости белого цвета, соответственно нужно брать БП, который с этим справится. Также нужно подумать, в каком режиме будет работать лента. Если это режимы типа «радуга», то мощность можно принять как половину от максимальной. Подробнее о блоках питания, а также о связанных с ними глюках читай здесь.

    blank

    5) Продолжая тему питания, хочу отметить важность качества пайки силовых точек (подключение провода к ленте, подключение этого же провода к БП), а также толщину проводов. Как показывает мой опыт, брать нужно провод сечением минимум 1.5 квадрата, если нужна полная яркость. Пример: на проводе 0.75 кв.мм. на длине 1.5 метра при токе 2 Ампера падает 0.8 вольта, что критично для 5 вольт питания. Первый признак просадки напряжения: заданный программно белый цвет светит не белым, а отдаёт в жёлтый/красный. Чем краснее, тем сильнее просело напряжение!

    blank

    6) Мигающая лента создаёт помехи на линию питания, а если лента и контроллер питаются от одного источника – помехи идут на микроконтроллер и могут стать причиной нестабильной работы, глюков и даже перезагрузки (если БП слабый). Для сглаживания таких помех рекомендуется ставить электролитический конденсатор 6.3V ёмкостью 470 мкФ (ставить более ёмкий нет смысла) по питанию микроконтроллера, а также более “жирный” конденсатор (1000 или 2200 мкФ) на питание ленты. Ставить их необязательно, но очень желательно. Если вы заметите зависания и глюки в работе системы (Ардуино + лента + другое железо), то причиной в 50% является как раз питание.

    blank

    7) Слой меди на ленте не очень толстый (особенно на модели ECO), поэтому от точки подключения питания вдоль ленты напряжение начинает падать: чем больше яркость, тем больше просадка. Если нужно сделать большой и яркий кусок ленты, то питание нужно дублировать медным проводом 1.5 (или больше, надо экспериментировать) квадрата через каждый метр.

    blank

    КАК ДЕЛАТЬ НЕЛЬЗЯ

    Как мы уже поняли, для питания ленты нужен источник 5 Вольт с достаточным запасом по току, а именно: один цвет одного качественного светодиода на максимальной яркости потребляет 0.012 А (12 мА), соответственно весь светодиод – 0.036 А (36 мА) на максимальной яркости. У китайцев есть “китайские” ленты, которые потребляют меньше и светят тускло. Я всегда закупаюсь в магазине BTF lighting (ссылки в начале статьи), у них ленты качественные. Я понимаю, что порой очень хочется запитать ленту напрямую от Ардуино через USB, либо используя бортовой стабилизатор платы. Так делать нельзя. В первом случае есть риск выгорания защитного диода на плате Arduino (в худшем случае – выгорания USB порта), во втором – синий дым пойдёт из стабилизатора на плате. Если всё-таки очень хочется, есть два варианта:

      Не подключать больше количества светодиодов, при котором ток потребления будет выше 500 мА, а именно 500/32

    Вы наверное спросите: а как тогда прошивать проект с лентой? Ведь судя по первой картинке так подключать нельзя! Оч просто: если прошивка не включает ленту сразу после запуска – прошивайте. Если включает и есть риск перегрузки по току – подключаем внешнее питание на 5V и GND.

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector