0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Мощный лабораторный источник питания 0-25В, 7А

Мощный лабораторный источник питания 0-25В, 7А

Для настройки, ремонта автоэлектронных и радиотехнических устройств или зарядки аккумуляторных батарей необходимо иметь хороший источник питания.

Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим характеристикам не уступающий лучшим промышленным образцам.

Основные требования, которым должен удовлетворять такой источник питания:

  • регулировка напряжения в диапазоне 0 — 25 В;
  • способность обеспечить ток в нагрузке до 7 А при минимальных пульсациях;
  • регулировка срабатывания токовой защиты. Кроме того, срабатывание защиты по току должно быть достаточно быстрым, чтобы исключить повреждение самого источника в случае короткого замыкания на выходе.

Возможность плавно регулировать в источнике питания ограничения тока позволяет при настройке внешних устройств исключить их повреждение.

Всем этим требованиям удовлетворяет предлагаемая схема универсального источника питания. Кроме того, данный блок питания позволяет использовать его в качестве источника стабильного тока.

Основные технические характеристики источника питания:

  • плавная регулировка напряжения в диапазоне от 0 до 25 В;
  • напряжение пульсаций, не более 1 мВ;
  • плавная регулировка тока ограничения (защиты) от 0 до 7 А;
  • коэффициент нестабильности по напряжению не хуже 0,001 %/В;
  • коэффициент нестабильности по току не хуже 0,01 %/В;
  • КПД источника не хуже 0,6.

Принципиальная схема

Электрическая схема источника питания, состоит из схемы управления, трансформатора (Т1), выпрямителя (VD4 ч- VD7), силовых регулирующих транзисторов VT3, VT4 и блока коммутации обмоток трансформатора.

Схема управления собрана на двух универсальных операционных усилителях (ОУ), расположенных в одном корпусе, и питается от отдельного трансформатора Т2. Это обеспечивает регулировку выходного напряжения от нуля, а также более стабильную работу всего устройства.

Для облегчения теплового режима работы силовых регулирующих транзисторов применен трансформатор с секционной вторичной обмоткой. Отводы автоматически переключаются в зависимости от уровня выходного напряжения при помощи реле К1, К2. Что позволяет, несмотря на большой ток в нагрузке, применить теплоотвод для VT3 и VT4 сравнительно небольших размеров, а также повысить КПД стабилизатора.

Блок коммутации предназначен для того, чтобы при помощи всего двух реле обеспечить переключение четырех отводов трансформатора, выполняет их включение в следующей последовательности: при превышении выходного напряжения уровня 6,2 В — включается К2; при превышения уровня 15,3 В включается К1(в этом случае с обмоток трансформатора поступает максимальное напряжение). Указанные пороги задаются используемыми стабилитронами (VD10, VD12). Отключение реле при снижении напряжения выполняется в обратной последовательности, но с гистерезисом примерно 0,3 В, т. е. когда напряжение снизится на это значение ниже чем при включении, что исключает дребезг при переключении обмоток.

Схема управления состоит из стабилизатора напряжения и стабилизатора тока. При необходимости устройство может работать в любом из этих режимов. Режим зависит от сопротивления регуляторов «I» (R21,R22).

Стабилизатор напряжения собран на элементах DA3, VT5, VT6.

Мощный лабораторный источник питания 0-25В, 7А, схема

Мощный лабораторный источник питания 0-25В, 7А, схема

Рис. 1. Принципиальная схема лабораторного источника питания с регулировкой тока ограничения.

Работает схема стабилизатора следующим образом. Нужное выходное напряжение устанавливается резисторами «грубо» (R9) и «точно» (R10). В режиме стабилизации напряжения сигнал обратной связи по напряжению (-Uoc) с выхода (Х2) через делитель из резисторов R9, RIO, R11 поступает на неинвертирующий вход 2 операционного усилителя DA3.

На этот же вход через резисторы R3, R5, R7 подается опорное напряжение +9 вольт. В момент включения схемы на выходе 12 DA3.1 будет увеличиваться положительное напряжение (оно через транзистор VT5 приходит на управление VT4) до тех пор, пока напряжение на выходных клеммах XI и Х2 не достигнет установленного резисторами R9, R10 уровня. За счет отрицательной обратной связи по напряжению, поступающей с выхода Х2 на вход 2 усилителя DA3.1, выполняется стабилизация выходного напряжения источника питания.

При этом выходное напряжение будет определяться соотношением:

Мощный лабораторный источник питания 0-25В, 7А, схема

Соответственно изменяя сопротивление резисторов R9 «грубо» и R10 «точно», можно менять выходное напряжение (Uвых) от 0 до 25 В.

Когда к выходу источника питания подключена нагрузка, в его выходной цепи начинает протекать ток, создающий положительное падение напряжения на резисторе R23 (относительно общего провода схемы). Это напряжение поступает через резистор R21, R22 в точку соединения R8, R12. Со стабилитрона VD9 через R6, R8 подается опорное отрицательное напряжение — 9 вольт.

Операционный усилитель DA3.2 усиливает разность между ними. Пока разность отрицательная (т. е. выходной ток меньше установленной резисторами R23, R24 величины), на выходе 10 DA3.2 действует + 15 В. Транзистор VT6 будет закрыт и эта часть схемы не оказывает влияния на работу стабилизатора напряжения.

При увеличении тока нагрузки до величины, при которой на входе 7 DA3.2 появится положительное напряжение, на выходе 10 DA3.2 будет отрицательное напряжение и транзистор VT6 приоткроется. В цепи R16, R17, HL1 будет протекать ток, который уменьшит открывающее напряжение на базе регулирующего силового транзистора VT4.

Свечение красного светодиода (HL1) сигнализирует о переходе схемы в режим ограничения тока. В этом случае выходное напряжение источника питания снизится до такой величины, при которой выходной ток будет иметь значение, достаточное для того, чтобы напряжение обратной связи по току (Uoc), снимаемое с резистора R10, и опорное в точке соединения R8, R12, R22 взаимно компенсировались, т. е. появился нулевой потенциал. В результате выходной ток источника окажется ограниченным на уровне, задаваемым положением движка резисторов R21, R22. При этом ток в выходной цепи будет определяться соотношением:

Мощный лабораторный источник питания 0-25В, 7А, схема

Диоды (VD11) на входах операционных усилителей обеспечивают защиту микросхемы от повреждения в случае включения её без обратной связи или при повреждении силового транзистора. В рабочем режиме напряжение на входах ОУ близко к нулю и диоды не оказывают влияния на работу устройства.

Читайте так же:
Как синхронизировать данные от смартфона к другому смартфону

Конденсатор С8 ограничивает полосу усиливаемых частот ОУ, что предотвращает самовозбуждение и повышает устойчивость работы схемы.

Настройка

При безошибочном монтаже в схеме узла управления потребуется настроить только максимум диапазона регулировки выходного напряжения 0 : 25 В резисторомR7 и максимальный ток защиты 7 А — резистором R8.

Блок коммутации в настройке не нуждается. Необходимо только проверить пороги переключения реле К1, К2 и соответствующее увеличение напряжения на конденсаторе С3.

При работе схемы в режиме стабилизации напряжения светится зеленый светодиод (HL2), а при переходе в режим стабилизации тока — красный (HL1).

Детали

Подстроечные резисторы R7 и R8 — типа СПЗ-19а; переменные резисторы R9, R10, R21, R22 — типа СПЗ-4а или ППБ-1 А; постоянные резисторы R23 — типа С5-16МВ на 5 Вт, остальные из серии МЛТ или С2-23 соответствующей мощности.

Конденсаторы С6, С7, С8, СЮ типа КІО-17, электролитические С1 — С5, С9 типа К50-35 (К50-32).

Микросхема DA1 может быть заменена импортным аналогом 78L15; DA2 — на 79L15; DA3 на рА747 или двумя микросхемами 140УД7.

Светодиоды HL1, HL2 подойдут любые с разным цветом свечения.

Силовые транзисторы устанавливаются на радиатор площадью около 1000 см^2.

Два силовых транзистора устанавливается параллельно для обеспечения надёжной работы устройства в случае короткого замыкания на выходных клеммах.

В наихудшем случае силовые транзисторы кратковременно должны выдерживать перегрузку по мощности Р = Ubx*I = 25×7= 175 Вт. А один транзистор КТ827А может рассеивать мощность не более 125 Вт.

Диоды VD4 — VD7 надо установить на небольшой радиатор.

Реле К1, К2 применены типоразмера R-15 (польского производства) с обмоткой на рабочее напряжение 24 В (сопротивление обмотки 430 Ом) — они за счет бескорпусного исполнения имеют малые габариты и достаточно мощные переключающие контакты. Можно использовать и отечественные реле типа РЭН29 (0001), РЭН32 (0201).

Переключающие напряжение с трансформатора Т1 реле К1 и К2 инерционны и не обеспечивают мгновенное снижение напряжения, приходящего со вторичной обмотки Т1, но они уменьшат тепловую рассеиваемую мощность на силовых транзисторах при длительной работе источника.

Микроамперметр РА1 малогабаритный типа М42303 или аналогичный с внутренним шунтом на ток до 10 А. Для удобства эксплуатации источника питания схему можно дополнить вольтметром, показывающим выходное напряжение.

В качестве сетевого трансформатора Т1 используется промышленный трансформатор типа ТППЗ19-127/220-50. Т2 — типа ТПП259-127/220-50.

Трансформатор можно изготовить и самостоятельно на основе промышленного трансформатора мощностью 200 Вт, намотав все обмотки (Т1 и Т2) на одном трансформаторе.

Источник: Ходасевич А. Г, Ходасевич Т. И., Зарядные и пуско-зарядные устройства, Выпуск 2.

Разборка и схема простого китайского лабораторного БП

Лабораторный блок питания PS-1503D — это практически самый дешевый регулируемый китайский блок питания из представленных на Али.

Разборка и схема простого китайского лабораторного БП

Технические данные лабораторного источника питания постоянного тока:

  • модель: PS-1503D
  • производитель: Long Wei
  • плавная регулировка выходного напряжения 0-15 В
  • ток до 3,0 А в режиме работы CV (стабилизация выходного напряжения)
  • линейный источник питания на трансформаторе
  • вольтметр: светодиодный дисплей с разрешением 0,1 В
  • амперметр: светодиодный дисплей с разрешением 0,01 А
  • одновременное считывание напряжения и тока на выходе
  • пассивное охлаждение большим радиатором.

В комплекте кабель с зажимами на конце типа «крокодил» длиной около 80 см, видно что самые дешевые штекера и жила кабеля около 0,5 мм2 всего.

Разборка и схема простого китайского лабораторного БП

Первое впечатление — довольно прочный корпус из листового металла толщиной 1 мм.

Разборка и схема простого китайского лабораторного БП

Перейдем к тому, что больше всего нравится радиолюбителям, то есть к внутренней части блока питания.

Разборка и схема простого китайского лабораторного БП

БП построен на базе популярной микросхемы LM723. А за электропитание стабилизатора отвечает трансформатор, который довольно сильно гудит при работе. Регулируемый транзистор — 2N3055. Вольтметр и амперметр на знаменитом чипе ICL7106.

Разборка и схема простого китайского лабораторного БП

Одни из вариантов схемы включения LM723 показан выше (с повышением тока до 20 А за счёт параллельного включения транзисторов).

Фото замеров тока и напряжения

Как видим, блок питания выдает максимум 12 В при токе 3 А, что ниже заявленного производителем. Неспособность отрегулировать ограничение по току также может быть недостатком. Еще нет защиты от короткого замыкания, что плохо, долго в режиме КЗ он не протянет.

Если кому-то время от времени требуется запитать Ардуино или вентилятор от компьютера, думаю, этого блока питания будет достаточно, но отсутствие слаботочной защиты сильно повышает риск для электроники.

Такой регулируемый блок конечно питания лучше, чем никакой, но давайте посмотрим правде в глаза, сегодня это реликвия с очень слабыми параметрами. В настоящее время уже преобладают импульсные преобразователи с гораздо более высоким КПД.

Глядя на печатную плату самого блока питания можно увидеть, что не все компоненты к ней припаяны. Так что БП вероятно собран в более дешевом варианте, где производитель сэкономил доллар на нескольких элементах, за счет функциональности всего источника питания. Удивляет наличие трансформатора, импульсный преобразователь был бы более дешевым решением.

Но с минимальными знаниями схемотехники LM723, думаем понятно как добавить ограничение тока в схему. В крайнем случае вставить в схему один резистор 0,33 Ом и протянуть два провода к переключателю токового режима защиты.

Разборка и схема простого китайского лабораторного БП

В любом случае на плате как раз показан один такой резистор, так как он есть из измерения тока, его также можно позаимствовать для целей защиты от короткого замыкания.

Читайте так же:
Регулировка створки алюминиевых окон

Регулировка выходного напряжения лабораторного блока питания

При создании этого блока питания я был вдохновлён программируемым модулем питания Ruideng DPS5015. Доступно несколько моделей, они различаются по максимальному выходному напряжению и току. Последние оснащены опциями связи (USB и Bluetooth).

Программируемый — регулируемый блок питания, описываемый в этой статье, предназначен для питания электронных самоделок. Первоначально он был основан на модуле модели Ruideng DPS5015 без связи с ПК, но позже я приобрёл модуль позволяющий подключить его к компьютеру.

Параметры блока питания:

  • Входное напряжение: 100 — 220В;
  • Частота переменного тока: 50 Гц / 60 Гц;
  • Выходное напряжение: 0 — 42 В;
  • Выходной ток: 0 — мин. 4A, макс. 5A (DPS5005) или 15A (DPS5015);
  • Разрешение выходного напряжения: 0,01 В;
  • Разрешение выходного тока: 0,01 А, (0,001 А для DPS5005);
  • Выходная мощность: 200 Вт;
  • Точность выходного напряжения: +/- (0,5% +1 цифра);
  • Точность выходного тока: +/- (0,5% + 2 цифры);
  • Количество ячеек памяти: 9 наборов групп данных плюс последняя настройка (память 0);

Что значит программируемый?

В блоке питания Ruideng DPS5015 или DPS5005 можно настроить параметры блока питания и сохранить их в энергонезависимой памяти с передней панели.

Блок питания Ruideng DPS5005 с модулем коммуникаци можно подключить к компьютеру с помощью USB кабеля либо посредством Bluetooth, и настраивать или программировать все параметры с ПК.

Основные программируемые параметры:

  • Выходное напряжение;
  • Выходной ток;
  • Пороги ограничения (напряжения, тока и мощности).

3575430229.jpg2461845125.jpg

Ruideng DPS5015 модуль содержит цветной ЖК-дисплей, на котором отображаются все необходимые данные. Модуль может обеспечить максимальное выходное напряжение 50 В и ток 15 А.

Любой модуль DPS Ruideng требует на входе другой источника питания, с выходным напряжением 50 В и током 5 А или более. Такой источник питания может быть выполнен на силовом трансформаторе 220В / 50В с диодным мостом и сглаживающим конденсатором. Это решение очень тяжелое, крупногабаритное и не очень эффективное. Я намеревался применить импульсный блок питания 220 В / 48 В, но поскольку подходящего не было найдено, было решено использовать два модуля 220VDC / 24VAC. Модули подключаются параллельно на их входах и последовательно на выходах.

  • Импульсный блок питания 24V / 4-6A, 2шт;
  • Версия без связи, программируемый PS Ruideng DPS5005, (или DPS5015);
  • Версия со связью, программируемая связь PS Ruideng DPS5005;
  • Пластиковый корпус;
  • Выключатель питания;
  • Вентилятор 12В;
  • Адаптер 220VDC / 12VDC;
  • Розетки bannana jack, 2шт, ebay;
  • Термистор, 10 кОм;
  • Драйвер для вентилятора, построенный на небольшой монтажной плате;
  • Сетевой кабель 220 В, 2,5 А из местного магазина, зависит от типа вилки.

Детали в драйвере вентилятора:

  • Транзистор 2N5401 или BC337;
  • Диод универсальный 1N4148;
  • Подстроечный резистор 1 кОм;
  • Гнездовой разъем JST 2,5 мм на плате, 3шт;
  • Штекер JST 2,5мм с кабелем, 3шт.

2950491957.jpg503067429.jpg

547101333.jpg

Схема подключения — Версия А — Без связи с компьютером

1732010053.jpg

Связи между всеми блоками показаны на картинке выше. С левой стороны находится ввод 220 В, главный кабель и главный выключатель. Посередине расположены два модуля AC/DC 220V/24V. Эти модули подключаются параллельно на входе напряжением 220 В переменного тока. Выходы этих модулей подключены последовательно и подключены к входу программируемого модулю DPS. Каждый модуль выдает 24 В постоянного тока, поэтому общее выходное напряжение составляет 48 В. Программируемый DPS 5015 подключается к выходным разъемам (плюс и минус выходного напряжения прибора) и ленточным кабелем к ЖК-дисплею. На картинке в верхней части — адаптер 220В/12В, драйвер вентилятора и вентилятор на 12 В. На картинке не отображается термистор. Термистор с отрицательным температурным коэффициентом, NTC устанавливается внутри одного из алюминиевых радиаторов.

1515997685.jpg

Программируемый DPS 5005, показанный на следующем рисунке, содержит силовой блок внутри дисплея. Провода подключаются напрямую от импульсных источников питания к дисплею и от дисплея к выходным разъемам.

503105373.png

Схема драйвера вентилятора представлена ​​на следующем рисунке. Подключение очень простое, всего несколько компонентов. Транзистор T1 включает вентилятор согласно значению термистора. Если термистор нагревается, его сопротивление уменьшается, транзистор открывается, вентилятор начинает крутиться. Диод D1 защищает транзистор.

Как правило, охлаждающий вентилятор не нужен для модулей DPS. Модуль DPS5015 оснащён собственным маленьким вентилятором. DPS5005 не требует охлаждения.

Блоки питания 220VDC/24VAC при большой нагрузке требуют охлаждения, поэтому я объединил их в единый блок и снабдил вентилятором. Вентилятор включается только при повышении температуры алюминиевого радиатора на одном из двух блоков. Большую часть времени работы программируемого блока питания вентилятор не работает. Для питания вентилятора установлен отдельный адаптер 220В/12В.

507539440.jpg

Схема подключения — Версия В — имеется связь с компьютером

Схема подключения такая же, как у версии A. К модулю Ruideng DPS5005 добавлена ​​плата связи USB. Плата USB подключается штатным кабелем с разъемами с двух сторон.

3849123732.jpg

К дисплейному модулю можно подключить только одну плату, USB или Bluetooth.

1507857696.jpg1686125712.jpg3600867456.jpg774950985.png

Рекомендуется проверять все модули и детали в процессе монтажа. Я рекомендую сначала проверить драйвер вентилятора, подключенный к вентилятору и к 12 В от другого источника питания. Вентилятор должен работать или не работать в зависимости от положения подстроечного резистора. Примерно в среднем положении подстроечника вентилятор должен останавливаться. Если нагреть термистор (например, паяльником), вентилятор должен начать вращаться.

Для управления блоком питания с помощью компьютера, требуется скачать и установить программу с этого сайта.

Программа имеет две вкладки: Базовые и расширенные функции. Функции вкладка «Базовые функции» похожи на функции панели самого прибора. Вкладка «Расширенные функции» находятся более сложные функции, которые можно использовать для автоматических измерений компонентов. Кроме более понятной и упрощенной памяти для групп данных есть функции:

  • Автоматический тест — позволяет настроить количество шагов (максимум 10), временные интервалы по величине задержки для каждого шага, напряжение и ток для каждого шага.
  • Сканирование напряжения — позволяет регулировать выходной ток, пуск, останов и значение шага напряжения, одну общую задержку для каждого шага.
  • Сканирование тока . Функционирует так же, как сканирование напряжения. Регулировка выходного напряжения, пуска, остановки и значения шага тока, одна общая задержка для каждого шага.
Читайте так же:
Регулировка пластикового окна веко своими руками

Руководство пользователя программируемого DPS Ruideng входит в комплект поставки.

Очень хорошая особенность блока питания — это возможность подключения или отключения нагрузки на выходных разъемах переключателем. Таким образом, при регулировке напряжения и тока нагрузка может быть отключена и защищена.

324013441.jpg774906929.jpg
На рисунках выше показан пример режима стабилизации тока. В верхней строке ЖК-дисплея отображаются заданные напряжение и ток. К выходным разъемам подключен резистор 4,7 Ом. Хотя напряжение установлено на 10 В, выходное напряжение составляет около 4,7 В, потому что ток установлен на 1 А и был достигнут.

На следующем рисунке к выходу подключен стабилитрон, ток установлен на значение около 0,05 А, а линия напряжения показывает напряжение стабилитрона 4,28 В. При таких измерениях компонентов важно проверить отображаемую мощность на третьей большой строке (например, 0,25 Вт). Я сжёг один стабилитрон установив напряжение на 30 В, потому что при настройке тока 0,05 А я допустил мощность на нём более 1,5 Вт!

В 9 ячейках памяти могут храниться очень часто используемые напряжения, такие как 3,3 В, 5 В, 6 В, 9 В, 12 В и так далее, с ожидаемыми токами, повышенными напряжениями и токами.

Управляемая с компьютера версия блока питания позволяет проводить автоматическое тестирование компонентов, нечто похоже на снятие вольт-амперных характеристик. Так же возможно организовать зарядку аккумулятора со временем и током, зависящим от напряжения.

  • Вперед
Связанные статьи

Лабораторный блок питания с цифровым управлением

В юном возрасте, около 40 лет назад, я создал двойной линейный блок питания. В этом источнике питания использовался один потенциометр для регулировки напряжения и один для регулировки тока. По прошествии многих лет эти потенциометры пришли в негодность, что затрудняло получение стабильного выходного напряжения.

Лабораторный блок питания из старого ATX

При наладке радиоэлектронных устройств часто возникает потребность в лабораторном блоке питания, позволяющий регулировать выходное напряжение и ток, и имеющий защиту. В магазинах они довольно дороги, поэтому я решил его собрать самостоятельно.

Мини лабораторный блок питания

Настольный блок питания чрезвычайно полезен для любителей электроники, но он может быть дорогим при покупке на рынке. В этом руководстве я покажу вам, как сделать блок питания для мини-лаборатории с ограниченным бюджетом. Это отличный проект как для начинающих, так и для всех, кто интересуется электроникой.

Коммутатор обмоток для лабораторного блока питания

Регулируемый источник питания является обязательным атрибутом на столе радиолюбителя, но из-за их немалой стоимости многие предпочитают сделать лабораторный блок питания.

Лабораторный блок питания Longwei LW-K3010D: один за всех!

Лабораторные блоки питания отличаются от обычных возможностью регулировки выходных параметров (напряжения и тока защиты) и, дополнительно, могут напряжение и ток измерять и доводить до сведения пользователя.

Благодаря этому пользователь (обычно — радиолюбитель или специалист по настройке или ремонту техники) может не разводить у себя на столе гору разнообразных блоков питания и измерителей тока и напряжения, а пользоваться одним-единственным прибором (что и отображено в заголовке обзора).

Сегодня мы познакомимся с лабораторным блоком питания Longwei LW-K3010D, рассчитанным на максимальное напряжение выхода 30 Вольт при максимальном выходном токе 10 Ампер (обе эти цифры являются частью наименования блока).

Помимо регулировки выходного напряжения (от нуля!), блок позволяет регулировать и величину тока срабатывания защиты (тоже от нуля).

Блок был приобретён на AliExpress, цена на момент составления обзора составляла около $53 (в дальнейшем может меняться).

Проверить актуальные цены можно здесь Вариант 1 или здесь Вариант 2 (вариант 2 — с индикатором на 4 знака).

Технические характеристики лабораторного блока питания Longwei LW-K3010D
Тип блокаИмпульсный
Выходное напряжение0 — 30 В
Регулировка тока защиты0 — 10 А
Измеряемые параметрыТок, напряжение (3-значная индикация)
Вес1.34 кг
Габариты233 x 71 x 159 мм

С пульсациями, стабильностью и прочим будем разбираться по ходу обзора.

Дизайн и внутреннее устройство лабораторного блока питания LW-K3010D (30 В, 10 А)

Боковая поверхность содержит множество отверстий для вентиляции.

Лицевую панель рассмотрим более детально:

Сверху расположены трёхзначные индикаторы напряжения и тока, далее вниз — обычная механическая кнопка ВКЛ/ВЫКЛ, переменники настройки выходного напряжения и тока защиты, пара светодиодов (зелёный — нормальная работа, красный — перегрузка), и, наконец, три выходных гнезда для подключения кабелей со штырями или клеммами.

Переменный резистор установки напряжения — многооборотный, и им, действительно, можно при достаточной аккуратности установить выходное напряжение с точностью до 0.1 Вольт.

Переменник установки тока защиты — обыкновенный, но от него и не требуется высокой точности.

Два крайних гнезда внизу (чёрное и красное) предназначены для подключения нагрузки, а среднее (желтое) — со схемой блока не соединяется, а соединяется с нулевым проводом в разъёме питания на задней стенке блока.

Соответственно, при питании блока от двухпроводной бытовой сети этот контакт получается ни с чем не соединённым.

Читайте так же:
Как регулировать зеркала шкафа купе

Посмотрим на лабораторный блок питания сзади:

Здесь, конечно. сразу бросается в глаза решетка вентилятора.

Вентилятор здесь не включается сразу «на всю катушку» при включении блока питания. Он начинает вращаться только по мере необходимости, т.е. при нагреве блока.

Благодаря этому достигаются сразу две цели: и вентилятор не надоедает непрерывным жужжанием, и блок питания не перегревается.

Кстати, вентилятор работает на вдув воздуха. Не забывайте хотя бы раз в год чистить блок от пыли!

Под решеткой вентилятора — переключатель 110/220 Вольт. Перед первым включением проверьте, что он — в правильном положении.

Под ним — почти обычный питательный разъём, как в компьютере.

Но он — не совсем обычный: в его нижней части расположен лоток с плавким предохранителем.

Также на задней панели есть маркировка, в том числе со ссылкой на сайт производителя. Но на момент обзора сайт не работал, показывал «ошибку 522»; так что этот ссылку на этот сайт приводить не буду.

Снизу блока питания — традиционные 4 резиновых ножки:

Ножки — хорошие, не скользят.

Глянем, для порядка, на «комплектуху», прилагаемую к блоку питания (сетевой шнур не показан):

Кабель для подключения нагрузки имеет «тропическую» конфигурацию — с «бананами» и «крокодилами».

Руководство пользователя содержит полезные сведения в части того, как настроить ток защиты.

Кратко, это делается так: установить напряжение 3-5 V, выкрутить регулировку тока на ноль, сделать «козу» (короткое замыкание) на выходе, регулировкой тока установить желаемый ток защиты, убрать короткое замыкание.

Теперь — делаем разборку блока питания. Проблемы это не представляет, крышка держится на пяти винтах без всяких хитростей.

Смотрим на главную плату лабораторного блока питания LW-K3010D:

Схема блока питания — весьма и весьма непроста. Ограничусь кратким описанием только силовой части.

Напряжение сети проходит через фильтр с индуктивными элементами и ёмкостями и поступает на мост KBU810 (1000 В, 8 А), затем — на два «больших» электролита 560 мкФ 200 В.

В качестве мощных ключевых транзисторов применены MOSFET-ы FQPF10N60C.

Их основные характеристики: предельное напряжение 600 В, предельный ток 9.5 А, максимальная мощность 50 Вт, сопротивление в открытом состоянии — не более 0.73 Ом.

Они установлены на радиаторы; один из радиаторов установлен на плате кривовато (не трогаем, а то сломаем!).

В низковольтной силовой части применён сдвоенный диод Шоттки MBR30200CT с радиатором (макс. обратное напряжение 200 В, макс прямой ток — 15 А на каждое плечо). Далее — фильтры из индуктивностей и шести электролитических кондёров.

Интересно, что плата содержит маркировку LW-K305D (в левом верхнем углу на фото). Вероятно, что точно такая же плата используется и в блоке питания K305D (30 В, 5 А).

Возможно, более слабый блок отличается более слабой силовой частью. А может, и ничем не отличается, кроме настроек. 🙂

Ещё одна небольшая плата в блоке питания прикреплена к лицевой панели. Она отвечает за измерения и индикацию.

Попытаемся её рассмотреть, не откручивая.

На этой маленькой плате видим две маленькие микросхемки, отвечающих за измерение напряжения и тока.

А самое главное на этой плате — два синеньких многооборотных резистора-подстроечника, с помощью которых можно подстроить показания встроенного вольтметра и амперметра, если они окажутся неточными.

Эти подстроечники обозначены на плате VRV1 (для напряжения) и ARV2 (для тока).

Забегая вперёд, скажу, что необходимости крутить подстроечник напряжения не было; а вот подстроечник тока пришлось слегка крутануть. Но это — потом, а пока досматриваем картинки вскрытия блока.

Последняя из картинок «потрохов» блока — вид главной платы с обратной стороны:

Здесь нет, в общем-то, ничего особо интересного.

Видна пара разрезов на плате, помогающих обеспечить электробезопасность устройства.

Вверху видна пара керамических резисторов, которая, видимо, просто не поместилась на основной стороне платы.

На этом можно завершить рассказ о конструкции и перейти непосредственно к тестам.

Технические испытания лабораторного блока питания LW-K3010D (30В 10А)

Испытания начинаем с традиционного так называемого «опробования» — контроле общей работоспособности и проверки, нет ли где существенных погрешностей.

Для этого нагружаем блок питания на не очень большую нагрузку, и проверяем сначала максимальное выдаваемое блоком напряжение:

Здесь с чувством глубокого удовлетворения отмечаем, что показания собственного вольтметра блока питания и внешнего прибора совпали «тютелька в тютельку».

Дальше ещё более развиваем достигнутое чувство глубокого удовлетворения и отмечаем, что лабораторный блок питания смог отдать напряжение даже выше, чем заявлено в его технических данных (32 В при заявленных 30 В).

Теперь устраиваем аналогичную проверку для контроля измерения тока:

А вот тут уже вышла нестыковочка в показаниях: собственный амперметр блока питания показал 1.48 Ампера, а внешний прибор — только 1.38 Ампера.

Пришлось открывать блок питания и подкрутить синенький подстроечник ARV2 до тех пор, пока показания не совпали.

Все дальнейшие тесты проведены уже с подстроенным собственным амперметром блока питания.

Сейчас — самый главный тест: выдаст ли блок питания заявленные 10 Ампер?!

10 Ампер, ведь это, знаете ли, очень серьёзный ток!

Поскольку мощность рассеяния в таком режиме ожидалась около 300 Вт, то тут никакая китайская электронная нагрузка на «прокатывала».

Пришлось для охлаждения нагрузки (резистора 3 Ом) использовать дополнительное специальное оборудование: стакан из комплекта «Bacardi» и тарелочку с голубой каёмочкой. В стакан была налита вода примерно наполовину.

Максимальный ток оказался 9.63 Ампера, т.е. чуть ниже заявленного (10 А). При попытке ещё больше повысить ток он уже не повышался, а ограничивался на этой величине. Кроме того, загорался красный светодиод — превышение тока защиты.

Читайте так же:
Регулировка яркости и контраста изображения

Расхождение с заявленным максимальным током оказалось небольшим — всего 3.7%. В связи с этим всё-таки ставим «зачёт» блоку питания по выполнению заявленного максимального тока.

Через пару минут работы в таком режиме вода в стакане закипела:

На этом данный эксперимент был завершен.

Теперь приступаем к более тонким экспериментам — проверке на пульсации выходного напряжения при разной нагрузке.

Сначала — проверка при токе в 1 Ампер (лёгкая нагрузка):

В целом всё — довольно благообразно; а короткие «иголки» на осциллограмме, вероятнее всего, не «всплески» выходного напряжения, а просто помехи, попавшие на кабели.

Однако уже при токе в 2.8 Ампера осциллограмма стала меня беспокоить:

Частота пульсаций составила чуть выше 2 кГц. Это — довольно странная величина, поскольку не похожа ни на частоту питающей сети, ни на частоту импульсного преобразователя.

Форма пульсаций — почти идеальный синус.

И при токе в 9 Ампер (близко к максимуму) началась просто какая-то вакханалия пульсаций:

Величина пульсаций колебалась на уровне 0.6 — 0.7 Вольт.

«Это провал», — подумал Штирлиц.

А вот как выглядели эти пульсации в более мелком масштабе по шкале времени:

В надежде как-то снизить размер пульсаций я полез в свой ящик с радиобарахлом и достал оттуда самый ёмкий электролит, который только у меня был, — 10000 мкФ.

Но реакция на его подключение оказалась совершенно непредсказуемой: пульсации не просто снизились, а полностью исчезли, «от слова совсем»:

Повторение эксперимента полностью подтвердило: при подключении ёмкого электролита параллельно выходу пульсации не просто уменьшаются, а исчезают. Эффект оказался устойчив даже при снижении ёмкости дополнительного внешнего электролита до 1000 мкФ (ниже не пробовал).

Что это было? Вероятнее всего, какой-то реальный резонанс в цепи выходного фильтра; или же «виртуальный» резонанс сквозь все цепочки обратной связи в блоке питания. Подключение дополнительного конденсатора вынесло его частоту за те пределы, где его могли «раскачать» внутренние процессы блока питания; и он исчез.

Но этот спасительный электролитический конденсатор внутрь блока питания встраивать я не стал.

Я философски рассудил, что в устройствах, для которых важно качество питания, и так уже бывает напаяно электролитов по самое некуда.

А об устройствах, менее чувствительных к качеству питания, вообще нет повода беспокоиться.

В итоге я оставил блок питания «как есть» и собираюсь и далее им пользоваться на благо себя, любимого (как мне хочется верить).

После этих философских рассуждений позвольте перейти к последнему эксперименту — определению реакции на короткое замыкание ("козу") и выход из него.

При выходе из короткого замыкания блок питания ведёт себя правильно: напряжение нарастает более-менее плавно; и, главное — никаких выбросов вверх выше установленного номинала напряжения нет!

Какого-то заметного температурного ухода выходного напряжения обнаружить не удалось. Возможно, это связано с тем, что блок сам по себе хорошо борется с повышением температуры (включает вентилятор, когда надо).

Окончание симпозиума

Теперь пора сделать выводы из всей проделанной работы.

Начну с того, что блок лабораторный блок питания LW-K3010D не только выполнил, но и перевыполнил заявленные параметры (по напряжению перевыполнил на 2 Вольта — вместо 30 В осилил целых 32 В). Лишние два Вольта всегда пригодятся!

Есть у него проблема с пульсациями, но она — решаемая.

Как я пояснял в обзоре, я решил не бороться с пульсациями, а оставить всё «как есть». Но радиолюбители-перфекционисты могут для успокоения совести установить внутрь блока питания электролитический конденсатор для полного гашения пульсаций. Только надо помнить, что его номинальное напряжение должно быть строго выше 32 В.

В качестве особого преимущества этого блока питания отмечу, что, благодаря узкой вертикальной конструкции он занимает на столе очень мало места. Собственно, это и была одна из причин его выбора (главная причина — это всё-таки его высокая выходная мощность).

И, на всякий случай напомню, где его можно купить: Вариант 1 или здесь Вариант 2. Если где-то точно такой же блок вдруг найдётся дешевле, то тоже можно брать — товар одинаковый.

Регулировка выходного напряжения лабораторного блока питания

Добавлено 04.03.2012
Просмотров 903044

Добавлено 15.01.2012
Просмотров 826337

Добавлено 30.07.2011
Просмотров 817570

Добавлено 17.10.2011
Просмотров 764758

Добавлено 19.10.2013
Просмотров 756574

Добавлено 14.10.2011
Просмотров 617679

Добавлено 09.04.2014
Просмотров 539698

Добавлено 14.06.2013
Просмотров 529961

Добавлено 30.09.2015
Просмотров 524662

Добавлено 09.04.2012
Просмотров 515589

Добавлено 13.12.2016
Просмотров 506935

Добавлено 19.10.2014
Просмотров 480587

Добавлено 10.08.2013
Просмотров 456356

Добавлено 09.11.2011
Просмотров 416047

Добавлено 20.05.2016
Просмотров 373163

Добавлено 19.05.2013
Просмотров 351138

Добавлено 23.07.2015
Просмотров 306156

Добавлено 12.12.2013
Просмотров 293407

Добавлено 08.05.2011
Просмотров 276208

Добавлено 05.04.2012
Просмотров 275005

Добавлено 16.12.2013
Просмотров 266486

Добавлено 01.03.2016
Просмотров 263233

Добавлено 11.12.2011
Просмотров 257082

Добавлено 05.05.2011
Просмотров 253243

Добавлено 30.07.2014
Просмотров 249776

Добавлено 17.10.2012
Просмотров 248159

Добавлено 31.01.2012
Просмотров 234197

Добавлено 29.12.2012
Просмотров 233099

Добавлено 12.06.2014
Просмотров 227554

Добавлено 05.04.2017
Просмотров 227004

» Зарег. на сайте
Всего: 6862
Новых за месяц: 38
Новых за неделю: 7
Новых вчера: 1
Новых сегодня: 1 » Из них
Администраторов: 1
Модераторов: 2
Проверенных: 3
Обычных юзеров: 6856 —>

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector