0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Cамодельный блок питания на 12 вольт

Cамодельный блок питания на 12 вольт

Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:

  • Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
  • Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
  • Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.

Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.

Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками. Однако чтобы выйти в конечном счете на искомые 12 вольт напряжения при работающей нагрузке, нужно взять трансформатор, понижающий вольт до 16.

Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.

Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.

Компоновка прибора

Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции. Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения.

Корпус блока питанияКорпус блока питания Корпус блока питанияКорпус блока питания

На трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.

Низковольтная обмоткаНизковольтная обмотка Монтажная платаМонтажная плата

Дальнейшие действия по монтажу будут проходить на этой монтажной плате, значит, она должна быть достаточной по площади, длине и допускать возможную установку радиаторов на диоды, транзисторы или микросхему, которые должны еще поместиться в выбранную коробку.

Диодный мостДиодный мост

Диодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.

Схема диодного моста

Схема диодного моста

Остальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.

Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.

Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.

Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.

Проблемы простого блока питания с нагрузкой

Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.

Читайте так же:
Как отрегулировать ручку окна пвх

Формулы мощности нагрузки и сопротивления

Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:

  1. Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
  2. Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
  3. Использовать более мощные блоки питания или блоки питания с большим запасом мощности.

Блок питания со стабилизатором на микросхеме

На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.

Блок питания со стабилизатором на микросхеме

Блок питания со стабилизатором на микросхеме

Это уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.

Блок питания повышенной мощности

Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.

Транзисторы Дарлингтона типа TIP2955

Транзисторы Дарлингтона типа TIP2955

Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).

На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.

Подключение одного составного транзистора ДарлингтонаПодключение одного составного транзистора Дарлингтона

Внимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.

Мини лабораторный блок питания 24 В, 6 А (12 А в КЗ) своими руками

Хочу поделиться с вами тем, как я собрал себе мини лабораторный (читай регулируемый) блок питания на 24 В, 6 А (12 А в КЗ). Идея и схема не являются продуктом моей интеллектуальной деятельности, я просто их повторил. Необходимость в таком блоке питания возникла уже давно, с ним легко диагностировать неисправности при ремонте различной электронной аппаратуры и он имеет небольшие габаритные размеры, что позволяет сэкономить и без того небольшое рабочее пространство домашнего мастера-ломастера.

Итак, схема устройства представлена ниже. Сразу приведу ссылку на видео-инструкцию, которой пользовался я.

Далее заказал я дождался с али всех необходимых компонентов. Откопал в закромах старый DVD-ROM, выпотрошил его и подготовил его корпус и ещё две 5" заглушки от системника (одного цвета не нашлось). В итоге вот так выглядит стартовый набор для сборки.

Затем я срезал ножницами по металлу выступающие части корпуса спереди и сзади, и прикрутил заглушки на винтики М3, которые очень часто встречаются системных блоках.

Внутреннюю поверхность корпуса пришлось немного подрихтовать молотком, так как на ней были выступающие части, которые значительно сокращали высоту монтажа.

Так как корпус металлический, необходимо было принять меры по изоляции верхней и нижней стенки корпуса. Для этого я ничего лучше придумать не смог, чем взять один лист прозрачной плёнки, которую я использую для печати фотошаблонов. Приклеил её в нескольких местах на двухсторонний скотч.

Далее прикинул расположение компонентов и просверлил отверстия под стойки. Для монтажа платы БП пришлось использовать самодельные стойки-втулки, сделанные из кусочков от пластикового дюбеля. Так как при использовании готовых металлических стоек, даже минимальной высоты, радиаторы БП упирались в верхнюю стенку корпуса.

Вентиляционные отверстия в корпусе предусмотрел с обоих боков. Насверлил и снял фаску сверлом большего диаметра.

Затем дремелем вырезал отверстия под дисплей, под разъем питания с задней стороны, а так же высверлил отверстия под остальную периферию на передней стенке.

Чтобы удобно можно было регулировать напряжение и ток, необходимо заменить подстроечные резисторы на плате понижающего преобразователя на переменные резисторы на 10 кОм, и подвести провода к плате.

Затем спаял всю проводку внутри корпуса согласно схеме. Так же необходимо замкнуть между собой контакты DATA+ и DATA-, иначе телефоны будут думать, что подключены к системному блоку компьютера и значительно ограничат ток зарядки. Как можно наблюдать на фото, я временно открутил переднюю и заднюю панели от корпуса, так как в отличии от предложенного на видео способа монтажа, прикрепил их не к нижней части корпуса, а к верхней, это удобнее с точки зрения их монтажа, но доставляет определённые неудобства при финальной сборке.

Читайте так же:
Как убрать знак синхронизации на самсунг галакси

При первом включении подключать дисплей не следует. Так как он питается от меньшего понижающего преобразователя напряжения, который будет подключен к USB порту и на нем сначала нужно выставить ровно 5 В (это значение не будет зависеть в дальнейшем от вращения ручек регулировки).

Далее собрал всю оставшуюся проводку и проверил показания вольтметра и амперметра. Оказалось их нужно немного настроить. Для этого на плате с дисплеем имеется два маленьких подстроечных резистора. Подключив мультиметр, привел показания более-менее к соответствию.

Далее для эстетичности как смог, зафиксировал проводку стяжками.

Чтобы ЛБП не катался по столу на торчащих головках от болтов, приклеил резиновые ножки.

Далее тестируем работу, для начала решил проверить питание от USB портов, подключил телефон. Как видим телефон у меня в режиме зарядки потребляет 350 мА. Почему так мало? Потому что я закрутился и забыл замкнуть между собой контакты DATA+ и DATA- USB разъёма))) нужно будет устранить этот косячек. А так же показания 5 В это совпадение. На самом деле неважно какое напряжение будет выставлено на вольтметре, на USB портах всегда будет 5 В, так как это напряжение задается подстроечным резистором на самой плате step-down преобразователя и не зависит от положения ручек регулировки.

Так же у меня недавно сгорела зарядка от моей бритвы, решил проверить питание от основных клемм на ней. Выставил 15 В, как видим бритва при зарядке берет ток всего 190 мА.

И вот финальный вид готового мини ЛБП.

И теперь главный вопрос, а сколько же стоили комплектующие для сборки? Вот вам подробная смета, первые три детали куплены в Китае, остальные в местном радиомагазине:

1. Блок питания 24 В, 6 А — 667 р;
2. Понижающий, регулируемый преобразователь — 293 р;
3. Вольтметр — 192 р;
4. Step-down преобразователь 3А — 35 р;
5. Штекер питания AC — 20 р;
6. Гнезда "бананы" — 2х15 р — 30 р;
7. Штекеры "бананы" — 2х15 р — 30 р;
8. USB порт, двойной — 25 р;
9. Стойки М3 — 6х6 р — 36 р;
10. Кнопка включения — 20 р;
11. Гайки М3 — 6х3 — 18 р;
12. Переменные резисторы — 2х25 — 50 р;
13. Ручки для резисторов — 2х11 р — 22 р;
14. Корпус от DVD привода — бесплатно. Но БУ можно купить за 100 р.

ИТОГО: 1438 рубля.

Для любителей сравнивать, в местных магазинах ЛБП стоят от 2500 р. Сборка заняла у меня один выходной день и два вечера после работы.

Про нагрев: радиаторы начинают греться только при продолжительной работе на нагрузке, близкой к максимальной. Я не планирую использовать этот БП на предельных режимах, но если всё же будет такая необходимость, всегда можно добавить вентилятор.

Накачиваем заряд аркадного автомата: -5 В от источника питания на 5 В

Что общего у Sega System 1 и Hyper Neo Geo 64? Подсказка: ту же общую черту они имеют и с вашим PC, если у вас нет шины ISA.

У них нет отрицательных пяти вольт. Это особенно очевидно на одноигровых платах Neo Geo MV0, потому что контакт -5V на разъёме JAMMA заменён у них на небольшой логотип «SNK». У большинства плат, не использующих -5V, там всё равно будет контакт, но он ни с чем не соединён.

Это довольно удобно, если ты используешь supergun-платы наподобие Retroelectronik, о которых я говорю в статье, потому что к ним легко можно подключить блок питания ATX PC. [Прим. пер.: Supergun — это устройство, позволяющее играть в игры на настоящих платах аркадных автоматов дома, на обычном телевизоре. По сути, это аркадный миниавтомат.] Я обычно пользуюсь PicoPSU. Однако в 2000-х годах производители блоков питания ATX отказались от -5V, а многие изготовители перестали обеспечивать это напряжение ещё раньше, потому что оно не требовалось для машин, не имеющих разъёмов ISA, а таких машин к концу 90-х было очень много.

То есть всё здорово! Ну, по крайней мере, для тех плат, которые я использовала раньше…

Читайте так же:
Регулировка пилы хускварна 135

Triple-Z80 и его аудиодрузья

Это Athena, игра SNK 1986 года. Вам может быть знаком её порт на NES, но я гарантирую, что в аркадной версии она работает лучше. В ней используется плата SNK «triple Z80»; её назвали так, потому что на ней установлено три процессора Z80. Два из них совместно выполняют код программы, а третий занимается кодом звука. Подобная структура платы использовалась и в некоторых других играх, например, в Fighting Golf.

Совместная работа трёх процессоров — это интересно, но давайте придерживаться нашей темы. Для чего же подобная плата использует -5V?

Аудиоусилитель Mitsubishi M51516L на 12 Вт. На платах JAMMA используется усиленный звук, который можно соединять непосредственно с пассивным динамиком; это может быть реальной опасностью для пользователей supergun, так как подача усиленных аудиосигналов на устройство, ожидающее линейного уровня, может окончиться взрывом. Но давайте опустим это и взглянем на схему контактов. Найти её было сложно; я обнаружила её в большом PDF с сотнями других аудиоусилителей.

И этот усилитель не использует -5V ни на одном перечисленном контакте, верно?

Хотя этого может быть и не видно на схеме, когда я прозвонила схему мультиметром, то увидела, что -5V проходит через конденсатор на 100 мкФ, а затем идёт на контакты 6 и 2. Что это за контакты? Разумеется, это заземление. Соединив заземление с -5V, они могут использовать 12V на контакте 9 для +Vcc, и получить аж целых 17V между заземлением и положительным напряжением. Это отлично подходит для усилителя, потому что чем больше диапазон входных напряжений, тем лучше будет выходной сигнал.

Для сравнения, внутри Sega System 1 (в частности, у моей копии Pitfall II) используется похожий усилитель LA4460A на 12 Вт, но плата может подать на него максимум 12V; следовательно, машина Athena может оказаться громче, а значит, SNK сможет привлечь чуть больше людей для игры в её платформер.

Но что происходит, если нет отрицательного напряжения? В таком случае нет заземления. И это плохо для усилителя; не знаю, сможет ли это на самом деле повредить оборудование, потому что ток не может течь без заземления, но нас ожидает гораздо худший итог: Athena без звука.

Переворачиваем знак

Умным решением стала бы покупка источника питания аркадного автомата, но я оказалась в ситуации, когда необходимо временное решение, потому что в 2021 году ожидание подобного заказа может занять некоторое время. Было бы здорово создать временную замену, которую можно использовать для создания -5V.

Давайте взглянем на эту невероятно простую схему. Это всего лишь источник напряжения, конденсатор и заземление. Так как источник напряжения DC, он будет «заряжать» конденсатор: с одной стороны напряжение будет выше, поэтому электроны будут отталкиваться, оставляя положительный заряд. С другой стороны конденсатора электроны будут притягиваться к этому положительному заряду. (Заземление, по сути, является источником электронов или местом, куда их можно сбросить. Его напряжение не изменится. Разумеется, это допущение нарушается, как только ты начинаешь иметь дело с реальным питанием.)

Что будет, если мы мгновенно отключим конденсатор от остальной части Вселенной, в том числе от источника питания и от заземления? Если мы сделаем так после зарядки конденсатора, то заметим на источнике питания другое напряжение. Что если бы мы подключили заземление с той стороны, где раньше было +5V?

Как видите, разность сменит знак. Теперь у нас есть источник -5V. Разумеется, он будет работать только пока на конденсаторе есть заряд, но если мы сможем вернуться к первой конфигурации, то можем создать большее отрицательное напряжение. В каком-то смысле, мы «накачиваем» заряд — это накачка заряда. Здесь можно использовать транзисторы как переключатели, чтобы не пришлось постоянно отсоединять и подключать провода.

Недостатки

Вся аналоговая электроника опасна. В этом случае мы имеем дело с низкими напряжениями, поэтому опасность для человека, наверно, относительно низка. Однако она никогда не равна нулю!

Использование накачки на линии +5V перетянет ток с этой положительной линии +5V. Убедитесь, что ваш источник питания с этим справится. Повторюсь, лучший вариант — использовать настоящий источник питания аркадного автомата. Моя система стала для меня временным решением.

Использование -5V для усилителя обычно более терпимо к погрешностям и колебаниям, чем использование -5V для чипов ОЗУ. Хоть я и не знаю ни одной платы JAMMA, использующей ОЗУ -5V, это не значит, что они не существуют. Используйте этот способ на свой страх и риск!

Многие аркадные платы, требующие отрицательных напряжений, например, SNK Triple-Z80, довольно стары и их легко повредить. Проверяйте всё. Используйте этот способ на свой страх и риск.

Читайте так же:
Старые пластиковые окна на зиму отрегулировать

Разумеется, постоянное переключение напряжений вручную было бы утомительным процессом. Именно поэтому за нас это делают интегральные схемы: в данном случае ICL7660.

Она обеспечивает накачку. Нам всё ещё нужно подключить конденсатор между и соединить напряжение питания. Также неплохо будет подключить конденсатор между выводом и заземлением, чтобы снизить колебания; так как мы постоянно заряжаем и разряжаем конденсатор, будут присутствовать колебания переменного тока. LV используется для низких напряжений, и в спецификации написано, что при напряжении выше 3,5 В его следует отключить. OSC тоже можно оставить отключенным. (Рекомендую посмотреть на схему Питера Виса.)

Стоит заметить, что я сглупила и заказала чипы в форм-факторе SOP8. Если бы я была роботом, они оказались бы очень удобными, и даже видно, что они прибыли в упаковке, рассчитанной на автомат для установки компонентов. К счастью, у меня нашлись переходники, которые можно было использовать на макетной плате, но если вы хотите изготовить эту схему, то рекомендую покупать DIP8. Или быть роботом. Это упростило бы и многие другие вещи.

При помощи мультиметра проверьте вывод, прежде чем подключать его к плате. Но несмотря на всю эту аналоговую сложность, схема в целом очень проста.

Получилось!

Теперь я слышу звук игры Athena. И для меня звуки в игре являются очень важной частью процесса. Стоит однако заметить, что в моём случае -5V упали до -3V; даже в этом случае системе сложно обеспечить полные -5V. Для её усилителя это нормально, но так может быть не всегда. И стоит ещё заметить, что силы тока не хватит для работы усилителя на полную мощность; здесь я сделала громкость маленькой (на плате есть регулировочный потенциометр) и выполняю усиление на динамиках.

Но мне всё равно кажется. что был забавный и очень простой проект. В случае подобных мелких аналоговых проблем есть чипы, которые помогут вам в решении! А серьёзные проблемы обычно уже решены кем-то другим.

Стоит также сказать, что использование -5V не всегда означает, что игра была сделана в 1980-х. Midway продолжала использовать это напряжение уже сильно после наступления эпохи 3D. Для JAMMA оно по-прежнему является стандартом, и нет никаких гарантий, что оно не будет использоваться в какой-то плате.

Как собрать блок питания с регуляторами своими руками

Для радиолюбителей, да и вообще современного человека, незаменимой вещью в доме является блок питания (БП), ведь он имеет очень полезную функцию — регулирование напряжения и тока.

При этом мало кто знает, что сделать такой прибор при должном старании и знаниях радиоэлектроники вполне реально своими руками. Любому радиолюбителю, которому нравится возиться дома с электроникой, самодельные лабораторные блоки питания позволят заниматься своим хобби без ограничений. Как раз о том, как своими руками сделать регулируемый тип блок питания расскажет наша статья.

Что нужно знать

Блок питания с регулировкой тока и напряжения в современном доме – необходима вещь. Этот прибор, благодаря своему специальному устройству, может преобразовать напряжение и ток, имеющееся в сети до того уровня, который может потреблять конкретный электронный прибор. Вот примерная схема работы, по которой можно своими руками сделать подобный прибор.

Схемы для БП

Но готовые БП стоят достаточно дорого, для того чтобы покупать их под конкретные нужды. Поэтому сегодня очень часто преобразователи для напряжения и тока изготавливаются своими руками.

Обратите внимание! Самодельные лабораторные блоки питания могут иметь различные габариты, показатели мощности и прочие характеристики. Все зависит от того, какой именно преобразователь вам нужен и для каких целей.

Профессионалы могут легко сделать мощный блок питания, в то время как новичкам и любителям подойдет для начала простой тип прибора. При этом схема, в зависимости от сложности, может использоваться самая разная.

Что нужно учитывать

Детали блока питания

Регулируемый блок питания представляет собой универсальный преобразователь, который может использоваться для подключения любой бытовой или вычислительной аппаратуры. Без него ни один домашний прибор не сможет функционировать нормально.
Такой БП состоит из следующих составных частей:

  • трансформатор;
  • преобразователь;
  • индикатор (вольтметр и амперметр).
  • транзисторы и прочие детали, необходимые для создания качественной электрической сети.

Схема, приведенная выше, отражает все компоненты прибора.
Кроме этого, данный тип блока питания должен обладать защитой на сильный и слабый ток. В противном случае любая внештатная ситуация может привести к тому, что преобразователь и подключенный к нему электрический прибор просто перегорит. К этому результату также может привести неправильная спайка компонентов платы, неправильное подключение или монтаж.
Если вы новичок, то для того чтобы сделать регулируемый тип блока питания своими руками лучше выбирать простой вариант сборки. Одним из простых видов преобразователя является 0-15В БП. Он имеет защиту от превышения показателя тока в подключенной нагрузке. Схема для его сборки размещена ниже.

Читайте так же:
Как отрегулировать на пластиковых окнах с летнего на зимнее

Простой вариант схемы БП

Простая схема сборки

Это, так сказать, универсальный тип сборки. Схема здесь доступна для понимания любому человеку, который хотя бы раз держал в руках паяльник. К преимуществам этой схемы можно отнести следующие моменты:

  • она состоит из простых и доступных деталей, которые можно отыскать либо на радиорынке, либо в специализированных магазинах радиоэлектроники;
  • простой тип сборки и дальнейшей настройки;
  • здесь нижний предел для напряжения составляет 0,05 вольт;
  • двухдиапазонная защита для показателя тока (на 0,05 и 1А);
  • обширный диапазон для выходных напряжений;
  • высокая стабильность в функционировании преобразователя.

Часть боока питания

В этой ситуации с помощью трансформатора напряжение будет обеспечиваться в диапазоне на 3В больше, чем имеется максимальное требуемое напряжение для выхода. Из этого следует, что блок питания, способный регулировать напряжение в пределах до 20В, нуждается в трансформаторе минимум на 23 В.

Обратите внимание! Диодный мост следует выбирать, исходя из показателя максимального тока, который будет ограничиваться имеющейся защитой.

Конденсатор для фильтра 4700мкф позволит чувствительной к помехам по питанию техники не давать фон. Для этого потребуется компенсационный стабилизатор, имеющий коэффициент подавления для пульсаций более 1000.
Теперь, когда с основными аспектами сборки мы разобрались, необходимо обратить внимание на требования.

Требования к прибору

Чтобы создать простой, но одновременно качественный и мощный блок питания с возможностью регулировать напряжение и ток своими руками, необходимо знать, какие требования существуют к такому типу преобразователей.
Эти технические требования выглядят так:

  • регулируемый стабилизированный выход на 3–24 В. При этом нагрузка по току должна составлять минимум 2 А;
  • нерегулируемый выход на 12/24 В. При этом предполагается большая нагрузка по току.

Чтобы выполнить первое требование, следует использовать в работе интегральный стабилизатор. Во втором случае выход необходимо сделать уже после диодного моста, так сказать, в обход стабилизатора.

Приступаем к сборке

Трансформаторы для блока питания

После того как вы определились с требованиями, которым должен отвечать ваш постой блок питания регулируемого типа, а также была выбрана подходящая схема, можно начинать саму сборку. Но прежде всего запасемся нужными нам деталями.
Для сборки вам понадобятся:

  • мощный трансформатор. Например, ТС-150–1. Он способен выдавать напряжение в 12 и 24 В;
  • конденсатор. Можно использовать модель на 10000 мкФ 50 В;
  • микросхема для стабилизатора;
  • обвязки;
  • детали схемы (в нашем случае — схема, которая указана выше).

После этого по схеме собираем своими руками регулируемый блок питания в точном соответствии со всеми рекомендациями. Последовательность действий должна быть соблюдена.

Собраный БП

Для сборки БП используются следующие детали:

  • германиевые транзисторы (в большинстве своем). Если вы захотите заменить их на более современные кремневые элементы, тогда нижний МП37 обязательно должен остаться германиевым. Здесь используются МП36, МП37, МП38 транзисторы;
  • на транзисторе собирается токоограничительный узел. Он обеспечивает отслеживание падения на резисторе напряжения.
  • стабилитрон Д814. Он определяет регулировку максимального выходного напряжения. На себя он забирает половину от выходного напряжения;

Обратите внимание! Поскольку стабилитрон Д814 отбирает ровно половину напряжения на выходе, то его следует выбирать для создания 0-25В выходного напряжения примерно на 13 В.

  • нижний предел в собранном блоке питания имеет показатель напряжения всего 0,05 В. Такой показатель редкость для более сложных схем сборки преобразователя;
  • стрелочные индикаторы отображают показатели тока и напряжения.

Компоненты для сборки

Детали для сборки

Для размещения всех деталей необходимо выбрать стальной корпус. Он сможет экранировать трансформатор и плату блока питания. В результате вы избежите ситуации появления различного рода помех для чувствительной аппаратуры.

Получившийся преобразователь можно спокойно использовать для питания любой бытовой аппаратуры, а также экспериментов и проверок, проводимых в домашней лаборатории. Также такой прибор можно применять для оценки работоспособности автомобильного генератора.

Заключение

Используя простые схемы для сборки регулируемого типа блока питания, вы сможете набить руку и в дальнейшем делать своими руками более сложные модели. Не стоит брать на себя непосильный труд, так как в конечном итоге вы можете не получить желаемый результат, а самодельный преобразователь будет работать неэффективно, что негативным образом может сказаться как на самом приборе, так и на функциональности электроаппаратуры, подключенной к нему.
Если же все сделать правильно, то на выходе вы получите отличный блок питания с регулировкой напряжения для своей домашней лаборатории или других бытовых ситуаций.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector