0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование частоты вращения асинхронного двигателя

Регулирование частоты вращения асинхронного двигателя

Общие сведения. Технологический процесс часто требует изменения частоты вращения исполнительного механизма. С этой целью широко применяются коробки скоростей, которые усложняют кинематику провода, вызывают вибрацию системы и увеличивают инерционность привода. Для повышения точности обработки и увеличения производительности целесообразно использовать регулировочные свойства двигателей. В асинхронных двигателях частота вращения определяется из равенства

Из этого равенства следует, что изменять п можно тремя способами: изменением частоты f1 , числа пар полюсов р и скольжения s. Частоту вращения ротора в принципе можно регулировать изменением напряжения питания U1. Однако с увеличением U1 появляется опасность превышения допустимой температуры нагрева двигателя, а с уменьшением U1 уменьшается перегрузочная способность двигателя.

Регулирование изменением частоты (частотное регулирование). Этим способом изменение частоты вращения ротора п осуществляется за счет изменения частоты питающего напряжения f1 . Это возможно потому, что скольжение в номинальном режиме составляет всего 2—8 %.

Для изменения частоты f1 могут применяться машинные и полупроводниковые (тиристорные) преобразователи. На рис. 3.36 показана схема машинного преобразователя. Асинхронный двигатеь АД с постоянной частотой вращает генератор постоянного тока Г, работающий в системе генератор — двигатель. Генератор Г питает двигатель Д постоянного тока, частота вращения которого регулируется током возбуждения генератора Г и двигателя Д.

Двигатель вращает с различными частотами синхронный генератор СГ, частота выходного напряжения которого f1 = n1p/60 изменяется. В результате АД изменяет частоту вращения рабочего механизма. Этот способ позволяет плавно изменять частоту вращения АД. Недостатками способа являются высокая стоимость преобразователя, низкий КПД установки из-за многократного преобразования энергии, сравнительно небольшой диапазон регулирования.

Частотное тиристорное регулирование. Значительно больший эффект при частотном регулировании достигается применением тиристорных преобразователей. На рис. 3.37 показана схема такого регулирования. Тиристорный преобразователь ТП питается от трехфазной сети с постоянными значениями напряжения U1 и частоты f1.

На выходе преобразователя получается постоянное варьируемое напряжение U1c. Это напряжение подается на блок инвертора И, на выходе которого появляется регулируемое переменное напряжение U1v при частоте f1v. Напряжение U1v подается на асинхронный двигатель АД.

Для автоматизации процесса регулирования необходимо дополнительно иметь блок задания частоты БЗЧ и блоки управления напряжением УН и частотой УЧ.

Для поддержания точного значения скорости целесообразно иметь обратную связь по частоте с выхода АД на блок задания частоты.

Асинхронный двигатель не имеет явно выраженных полюсов и поэтому его число полюсов зависит от схемы соединения катушек в обмотках каждой фазы статора.

Если, например, обмотка фазы состоит из двух катушек, то при их последовательном соединении число пар полюсов р = 2, а при параллельном соединении р = 1. Начала и концы катушек выводятся на клеммы щитка, так что переключение катушек можно делать на работающем двигателе. Можно разместить в пазах статора две независимые обмотки, каждая из которых создает разное число пар полюсов, например, р = 1 и р = 2.

Одна из обмоток может, например, соединяться в одинарную звезду, а другая – в двойную звезду (рис. 3.38, а и б). Можно также переключать треугольник в двойную звезду (рис. 3.39, а и б).

В результате двигатель будет трехскоростной. В принципе можно разместить на статоре две обмотки, каждая из которых имеет две скорости, такая машина будет четырехскоростной. Однако размещение нескольких обмоток увеличивает габариты и стоимость машины. Поэтому лучше применять одну обмотку с переключением на четыре скорости. При этом можно получить синхронные скорости 3000 / 1500 / 1000 / 500 или 1500 / 1000 / 750 / 500 об/мин или другие комбинации.

Регулирование изменением числа полюсов является ступенчатым регулированием. Механические характеристики при разном числе пар полюсов показаны на рис. 3.40. Этот способ регулирования экономичен, рабочая часть характеристик жесткая, но данный способ применяется лишь в случаях, не требующих плавного регулирования, например в станках, где ступенчатое регулирование применяется с целью уменьшения числа ступеней в коробках скоростей, вентиляторах, насосах и др.

Регулирование частоты вращения изменением подводимого напряжения. При уменьшении напряжения U момент двигателя уменьшается пропорционально U 2 . В связи с этим изменяются механические характеристики, уменьшается критический момент Mк , при постоянном моменте сопротивления увеличивается скольжение и уменьшается частота вращения ротора.

Уменьшать напряжение U можно включением в цепь статора реостатов (рис. 3.41, а), автотрансформаторов (рис. 3.41,6) или регулируемых дросселей (рис. 3.41, в). При включении реостатов в них теряется значительная мощность (RI 2 ).

Читайте так же:
Регулировка замков деревянных окон

Автотрансформаторы дают возможность регулировать частоту вращения лишь вручную.

Регулируемые дроссели позволяют автоматизировать этот процесс, для чего их цепь

подмагничивания включается в систему автоматического регулирования.

Данный метод применяется только у двигателей малой мощности, так как при этом способе регулирования уменьшается КПД двигателя, уменьшается критический момент, а диапазон регулирования сравнительно небольшой.

Регулирование изменением сопротивления цепи ротора R2 (реостатное регулирование). Этот способ применим только для двигателей с фазным ротором. Такое регулирование связано с изменением скольжения s в соответствии с зависимостью п = п1 (1 — s).

Из формул ( 3.26) и ( 3.28) следует, что с увеличением R2 угол наклона механической характеристики увеличивается, а критический момент остается постоянным (Mк = const).

На рис. 3.42 представлено семейство характеристик п(М) при различных R2 . Если момент нагрузки Mc = const, то частота вращения n с увеличением R2 падает, а скольжение увеличивается.

Этот способ регулирования имеет ряд недостатков: дополнительные потери энергии в реостате, механические характеристики становятся мягкими, относительно малый диапазон регулирования.

ИННОВАЦИИ БИЗНЕСУ

Заявку на получение дополнительной информации по этому проекту можно заполнить здесь.

Устройство для автоматического регулирования напряжения асинхронного генератора

Регулирование напряжения автономных асинхронных генераторов в автоматическом режиме

Рекомендуемая область применения

Автономные асинхронные генераторы, применяемые в полевых условиях

Результат выполнения конструкторской разработки.

Предлагаемое устройство содержит асинхронный генератор 1 (см.рисунок), приводимый во вращение двигателем внутреннего сгорания 2. К статору асинхронного генератора 1 подключены батарея некоммутируемых конденсаторов 3, батарея коммутируемых конденсаторов 4 и группа пусковых конденсаторов 5. Параллельно пусковым конденсаторам 5 включен трехфазный электронный ключ 6. В нулевой точке батареи коммутируемых конденсаторов 4 включена схема широтно-импульсного управления 7, вход которой соединен с выходом измерительного трансформатора 8, блок управления 9 с одной стороны соединен с фазами генератора 1, а с другой стороны — с управляющими электродами симисторов 6.

Устройство для автоматического регулирования напряжения асинхронного генератора работает следующим образом. После запуска приводного двигателя 2 асинхронный генератор самовозбуждается от батареи некоммутируемых конденсаторов 3. Напряжение асинхронного генератора 1 поступает на блок управления 9. Блок управления подает сигнал на включение трехфазного электронного ключа 6. Последний включается и подает напряжение к нагрузке А, В, С. На холостом ходу работы генератора батарея коммутируемых конденсаторов 4 отключена. При подключении нагрузки напряжение на генераторе 1 уменьшается, и схема широтно-импульсного управления 7 изменяет ток, который пропорционально снижению напряжения увеличивает емкостный ток батареи коммутируемых конденсаторов 4, тем самым восстанавливая напряжение на асинхронном генераторе 1. При подключении двигательной нагрузки, соизмеримой с мощностью генератора 1, возрастает ток в цепи, напряжение генератора 1 снижается, так как емкости батареи коммутируемых конденсаторов 4 недостаточно для компенсации реактивной составляющей нагрузки. Сигнал от трансформатора тока 8 увеличивается, и блок управления отключает электронный ключ 6, при этом нагрузка оказывается включенной последовательно с пусковыми конденсаторами 5. Последние компенсируют индуктивную составляющую пускового тока и восстанавливают напряжение на зажимах генератора 1. После запуска двигательной нагрузки соизмеримой мощности ток в цепи нагрузки уменьшается, что приводит к тому, что блок управления подает сигнал на включение трехфазного электронного ключа, который включается и шунтирует группу пусковых конденсаторов. Дальнейшее питание нагрузки происходит через электронный ключ 6, а регулирование напряжения осуществляется схемой широтно-импульсного управления 7.

Использование данного устройства позволяет в автономном источнике питания небольшой мощности запускать двигатели единичной мощности, равной мощности генератора. Это особенно важно в полевых условиях. Например, электростанция мощностью 4 кВт с напряжением сети 220/127 В и частотой тока 200 Гц может питать любой электрифицированный инструмент, используемый для ремонта железнодорожных путей, единичной мощностью от 0,6 до 4 кВт.

Преимущества перед известными аналогами

Позволяет в автономном источнике питания небольшой мощности запускать двигатели единичной мощности, равной мощности генератора

Внедрено в производство

Соответствует технической характеристике изделия (устройства)

Годовой экономический эффект — 100 тыс.руб. в расчете на 1 устройство. Экономия электроэнергии — 10%.

Возможность передачи за рубеж

Возможна передача за рубеж

Дата поступления материала

ЗАПОЛНИТЬ ЗАЯВКУ НА ПОЛУЧЕНИЕ ДОПОЛНИТЕЛЬНОЙ ИНФОРМАЦИИ

Асинхронный генератор

Источники электропитания делят на синхронные и асинхронные в зависимости от типа генератора. В электротехнике, согласно законам физики, существует принцип обратимости энергии: электрические машины, которые могут преобразовывать электрическую энергию в механическую, также могут совершать обратные преобразования. Асинхронный генератор работает на данном принципе: он способен преобразовывать механическую энергию вращения ротора в электроток на обмотке статора. Применяется он на напряжения 220 и 380 В.

Читайте так же:
Сколько стоит отрегулировать окна пластиковые

Генератор

Вид асинхронного генератора

В генераторном режиме работы меняется знак скольжения, и двигатели асинхронного типа генерируют электрическую энергию.

Применение

  • Генераторы нашли применение в качестве тяговых электродвигателей на объектах транспортной инфраструктуры в машинах с реостатным и рекуперативным торможением, а также в сельском хозяйстве в устройствах, где нет потребности в компенсации реактивной мощности и высоких требований к качеству поставляемой электроэнергии (где возможны небольшие скачки напряжения, т.к. регулятор параметров отсутствует).
  • Для бытовых нужд асинхронные генераторы применяются в качестве двигателя автономных электростанций, которые приводятся в действие силами природы: энергией падающей воды, силой ветра и др.
  • Еще одним применением является использование генератора в качестве зарядного устройства для аккумуляторных батарей.
  • Для электроснабжения сварочных агрегатов.
  • Обеспечение бесперебойным электропитанием особо важных объектов: холодильников с лекарствами и др.

Устройство

Это устройство применяется для промышленных целей

Теоретически возможно переоборудование асинхронного двигателя в асинхронный генератор. Для осуществления задачи необходимо:

  • четко понимать, что такое ток;
  • знать физику преобразования механической энергии в электрическую;
  • создать все необходимые условия для появления электротока на обмотке статора.

Устройство асинхронного генератора

Генератор

Асинхронный генератор в разрезе

Основные узлы асинхронного генератора:

  • Ротор – вращающийся элемент, на котором образуется ЭДС. Тип исполнения – короткозамкнутый. Токопроводящие поверхности изготовлены из алюминия.
  • Ввод кабеля необходим для отпуска полученного электричества.
  • Датчик температуры для обмотки генератора необходим для постоянного мониторинга температуры на этой обмотке.
  • Герметичные фланцы предназначены для уплотнения соединения деталей.
  • Статор, на обмотке которого в процессе генерируется электроэнергия.
  • Обмотка может быть двух типов: однофазная и трехфазная (для напряжения 220 и 380 В), размещена на поверхности статора в виде звезды. 3 точки соединяются между собой, 3 другие – с контактными кольцами.
  • Контактные кольца не имеют электрической связи между собой, закреплены на валу ротора.
  • Щетки необходимы как регулятор, при помощи них происходит запуск трехфазного реостата, за счет чего можно контролировать сопротивление обмотки ротора.
  • Короткозамыкатель применяется для принудительной остановки реостата.

Принцип работы

Во время вращения лопаток ротора на токопроводящей части его начинает появляться электрический ток. Образующееся магнитное поле, наводит на обмотки статора два типа переменного напряжения – однофазное и трехфазное.

Регулировка параметров вырабатываемой энергии осуществляется изменением нагрузки на статоре. Регулятор в схеме отсутствует, т.к. конструктивно устройство не может быть оборудовано данным узлом: отсутствует электрическая связь между ротором и статором.

В каких случаях необходимо применение асинхронных устройств:

  • тяжелые условия работы оборудования – запыленность;
  • нет особых требований к качеству преобразованной энергии (величины частоты и напряжения);
  • нет возможности установки синхронной машины;
  • ограниченный бюджет объекта;
  • существует вероятность перегрузок в переходном процессе работы.

Асинхронные устройства не терпят частых перегрузок во время работы. При работе с завышенной мощностью срабатывает защита. Повторный запуск устройств оказывает негативное влияние на экономический эффект установки.

Т.к. отсутствует регулятор параметров, необходимо подключение измерительных приборов.

Для корректной работы системы и исключения преждевременных ремонтов, необходимо произвести расчет мощности генератора, исходя из предполагаемой нагрузки объекта.

Принцип работы в двухфазном режиме асинхронного генератора применяется для случаев, которые не требуют генерации трехфазного напряжения.

Преимущества:

  • малая рабочая емкость;
  • низкие нагрузки в режиме холостого хода, и как следствие, экономия первичного энергоносителя (ресурс, который приводит в действие ротор).

Недостатки:

  • отсутствует регулятор напряжения тока.

Маломощные генераторы 220 В

В качестве устройства-донора применяются асинхронные электродвигатели с короткозамкнутыми роторами от стиральных машин, бытовых пылесосов, электроприборов полива и аналогичные, в которых конденсаторные батареи подключены в схему параллельно рабочей обмотке. Для повышения эффективности работы увеличивают емкость конденсатора: в меньшей степени для активной нагрузки (лампы, паяльники), и в большей – для индуктивной (например, холодильники, телевизоры и т.п.).

Первичный механический двигатель (рекомендации):

  • Мощность первичного устройства выбирается на 50..100% больше, чем потребляемая мощность асинхронным генератором. Это необходимо для снижения потерь и повышения КПД процесса. Повышения КПД добиваются путем постоянного или кратковременного увеличения оборотов механического элемента.
  • Так как в схеме отсутствует регулятор тока, для стабильной работы установки необходим постоянный контроль параметров, т.е. наличие прибора измерения частоты (тахометра), напряжения (вольтметра) и набора переключателей (для подключения нагрузки на генератор, и два – для коммутации цепи возбуждения. Такая схема упрощает запуск и повышает стабильность работы электрооборудования.
  • В случае присоединения к генератору бытовой сети освещения, в электрической цепи необходимо предусмотреть двухфазный рубильник, который в данном случае будет отключать электроосвещение от стационарной сети.
Читайте так же:
Блок питания для светодиод с регулировкой напряжения

Однофазные рубильники для отключения применять запрещено в данном случае, т.к. необходимо отключение фазного и нулевого провода.

Эффективность установки

Перед проведением реконструкции необходимо учитывать масштаб экономического эффекта нового оборудования и целесообразность проведения процедуры.

Преимущества устройств:

  1. Низкая себестоимость электроэнергии: для преобразования необходимо наличие магнитного поля, которое генерирует электрический ток.
  2. В токе малое количество высших гармоник: малые потери на собственный нагрев, образование магнитных полей и др.
  3. Высокая надежность.
  4. Отсутствие цепи возбуждения.
  5. Дешевизна готовых моделей.
  6. Возможность переоборудования простейшего асинхронного двигателя в генератор.
  7. Отсутствие в схеме устройства коллекторно-щеточного механизма, что повышает срок эксплуатации.
  8. Отсутствие необходимости обслуживания конденсаторных батарей.

Недостатки:

  1. Невозможность выработать промышленную частоту генерируемого тока.
  2. Отсутствует регулятор параметров сети.
  3. Необходимость включения в схему работы выпрямителей.
  4. Индуктивная нагрузка требует увеличения прилагаемой потребной емкости. Следовательно, возрастает потребность подключения в схему устройства дополнительных конденсаторных элементов. Что впоследствии повышает стоимость установки.
  5. Не меньшая техническая сложность устройства, чем синхронные генераторы.
  6. Высокая чувствительность к перепадам нагрузки. Т.к. для работы устройства используется конденсатор, который забирает энергию (в традиционных генераторах применяют аккумуляторы, имеющие запас мощности), при увеличении нагрузки электроэнергии может не хватить на подзарядку и генерация прекратится. Для предотвращения этого явления используют батареи с изменяемым объемом емкости в зависимости от нагрузки. Применение данного оборудования экономически целесообразно для крупных объектов.

Преобразование двигателя

Принцип преобразования двигателя в простейший асинхронный генератор:

  1. Для модернизации понадобится двигатель от стиральной машины.
  2. Уменьшить толщину стенок сердечника. Для этого необходимо на токарном станке обточить по 2 мм по всей поверхности. Проделать отверстия (несквозные) не более 5мм глубиной.
  3. Из тонкого листа металла либо жести изготовить полосу, размерами соответствующую габаритам ротора.
  4. Установить неодимовые магниты в полученной свободной площади в количестве не менее 8 штук. Зафиксировать суперклеем.

Магниты необходимо прижимать к поверхности до полного застывания, иначе произойдет их смещение. Рекомендовано использовать очки, чтобы клей не попал в глаза в случае выскальзывания магнита.

  1. Плотной бумагой закрыть ротор со всех сторон и зафиксировать края скотчем.
  2. Эффективно загерметизировать мастикой торцевую часть ротора.
  3. Свободное пространство между магнитными элементами заполнить эпоксидной смолой через проделанное отверстие в бумаге.
  4. После застывания смолы убрать слой бумаги.
  5. Отшлифовать поверхность ротора наждачной бумагой, при наличии можно использовать дремель.
  6. Двумя проводами присоединить двигатель к рабочей обмотке. Удалить все неиспользуемые проводники.
  7. При необходимости заменить подшипники на новые.
  8. Установить выпрямитель тока и контроллер зарядки.

Тестирование

Тестирование собранного прибора

Советы по эксплуатации

При использовании асинхронного генератора, как и других электроустройств, необходимо соблюдать правила техники безопасности:

  • Прибор должен быть защищен от механических воздействий и погодных условий.
  • Рекомендовано изготовление специального защитного кожуха под собранный генератор.
  • Для корректной работы необходим постоянный мониторинг параметров устройства (напряжения, частоты), т.к. отсутствует регулятор величины тока. Установка измерительных приборов позволит контролировать эффективность автономной системы.
  • Самодельный генератор в целях безопасности рекомендовано использовать на напряжение 0,23 кВ.
  • Устройство должно быть присоединено к контуру заземления.
  • Следует избегать длительной работы в режиме холостого хода.
  • Запрещено допускать перегрев оборудования.
  • Генератор необходимо оборудовать кнопкой включения/отключения для оптимизации работы.

При отсутствии знаний основ электротехники специалисты настоятельно рекомендуют приобрести генератор заводского изготовления.

Реконструкция асинхронного двигателя

Процесс состоит из трех этапов:

  1. Подключение конденсаторных батарей к зажимам. После этого на обмотке начинается процесс намагничивания, который обусловлен движением опережающего тока.
  2. Самовозбуждение устройства. Происходит при правильном подборе емкости конденсаторов.
  3. Получение итоговых значений напряжения. Зависят от технических характеристик устройства, типа и емкости конденсаторов.

Модернизация

Модернизация асинхронного двигателя

Читайте так же:
Схема регулировки оборотов пылесоса самсунг

При правильном выполнении действий можно получить генератор с характеристиками асинхронного двигателя.

Видео

Асинхронные генераторы – полезная вещь в домашнем хозяйстве. Более мощные устройства вполне могут служить в качестве автономных электростанций, которые обеспечат нормальные параметры напряжения и частоты сети.

Генератор

Один из первых генераторов с возбудителем переменного тока

Экономически целесообразно переоборудовать заведомо рабочий неиспользуемый асинхронный электродвигатель. Только при этом будет наблюдаться экономический эффект, в отличие от приобретения нового устройства.

Несмотря на достаточно трудоемкий принцип модернизации, отсутствующий регулятор параметров сети, самодельные асинхронные генераторы являются хорошим решением для минимизации финансовых затрат на электроэнергию в условиях постоянно растущих цен на энергоносители.

Регулирование частоты и напряжения асинхронного генератора.Регулирование изменений

При оценке общих показателей автономного асинхронного генератора необходимо учитывать существенное изменения напряжения такие эксплуатационные факторы, как изменение частоты генерируемого
напряжения, которая варьирует с изменением нагрузки и скольжения, если частота вращения ротора поддерживается постоянной, а также колебания выходного напряжения U, появляющиеся вследствие электрической и магнитной несимметрии ротора.

Пульсации напряжения, обусловленные электрической не симметрией, возрастают при увеличении нагрузки и могут быть сведены к минимуму при качественной заливке короткозамкнутой клетки и выбраковке роторов с дефектами обмотки.
Магнитная несимметричность, связанная с возможной овальностью пакетов ротора и статора, эксцентриситетом, магнитной анизотропией сердечников, приводит к периодическим изменениям магнитного сопротивления на пути основного магнитного ротора и, как следствие, к колебаниям выходного напряжения. Устранение овальности и веерная сборка пакета ротора практически полностью исключают эту причину колебаний напряжения.
При оценке технико-экономических показателей автономного асинхронного генератора учитывается также необходимость в конденсаторной батарее как источнике реактивной мощности для создания магнитного ноля и компенсации реактивности нагрузки.
Значение реактивной мощности, затрачиваемой на создание магнитного поля асинхронного генератора с магнитной индукцией в зазоре Вт, определяется из соотношения может регулироваться или изменением емкости конденсаторов Ск, или же величиной напряжения Uc.
[adsense_id=»1″]

В настоящее время практическое применение находят конденсаторы типа К-71 с улучшенными массогабаритными показателями, имеющими удельную массу 0,3 — 0,6 кг/кВА. Если учесть, что cos<p автономного асинхронного генератора малой и средней мощности не превышает 0,7 — 0,75, то на 1 кВт его активной мощности может приходиться примерно 1 кВА реактивной мощности конденсаторной батареи. Однако величина необходимой емкости зависит также и от частоты f.
На рис. 5.30 приведены зависимости емкости С от относительной частоты вращения n2/n ном. при поддержании неизменным стабилизированного напряжения асинхронного генератора мощностью 4,5 кВт при работе в режиме холостого хода. Как видно, подбор необходимой емкости пришлось выполнять, исходя из соотношений:

Из этих соотношении следует, что при значениях скорости вращения ротора п2 < 0,9п2 и требуемая емкость быстро возрастает и генератор почти полностью загружается реактивным током.

Регулирование и стабилизация напряжения и частоты асинхронного генератора

Стабилизировать и регулировать выходное напряжение АГ возможно в основном изменением магнитною потока, что может быть достигнуто:
  • — изменением емкости конденсаторов, подключенных к обмоткам статора или фазного ротора;
  • — применением управляемых реакторов или нелинейных конденсаторов (варикондов);
  • — изменением напряжения на конденсаторах;
  • — подмагничиванием сердечника статора.

При этом во всех случаях или за счет изменения угла наклона вольтамперной характеристики цепи возбуждения или за счет изменения насыщения магнитной цепи изменяется положение точки А на рис. 5.15, т.е. регулируется напряжение холостого хода, а значит, и рабочее напряжение Асинхронного генератора.

Рис. 5-30. Схема автоматического регулирования асинхронного генератора с управляемым
силовым транзистором (а) и с подмагничиванием ярма статора (б).

Наиболее сломаю стабилизировать напряжение асинхронного генератора при переменной частоте вращения ротора и изменении нагрузки, когда одновременно изменяется и величина, и частота выходного напряжения.

Схемы регулирования напряжения и частоты асинхронного генератора

Достаточно эффективными для регулирования напряжения и частоты могут быть названы два типа схем автоматического регулирования асинхронного генератора с к.з. ротором.

На рис. 5.30, а показана схема, при которой реактивная мощность асинхронного генератора регулируется изменением емкости конденсаторной батареи с помощью силового транзистора, работающего либо в режиме непрерывного регулирования, либо в импульсном режиме. Мощность конденсаторной батареи должна быть достаточной и для компенсации реактивной составляющей нагрузки.
На рис. 5.30, б приведена схема регулирования с подмагничиванием ярма статора регулируемого асинхронного генератора. Необходимый диапазон изменения сопротивления намагничивающего контура определяется из регулировочной характеристики, при этом для эффективной стабилизации напряжения при изменении нагрузки в пределах (0,5…1,25)Р„ необходимо использовать 25…30% плошади паза, что должно быть предусмотрено при проектировании.
[adsense_id=»1″]
Следует отметить, что это не приводит к существенному увеличению габаритов асинхронного генератора, однако сопровождаемся искажением кривой ноля в воздушном зазоре и соответствующими искажениями в кривой напряжения даже при синусоидальном распределении МДС.

Читайте так же:
Регулировка пластиковых окон сзао
Схема автоматического регулирования напряжения и частоты асинхронного генератора на варикондах (рис. 5.31),

которая работам следующим образом.Измерители частоты и напряжения ИЧ и ИН фиксируют отклонение этих параметров or номинальных значений и формируют сигналы на усилители УЭ и УБ, которые затем выпрямляются и после преобразования подаются на вариконды. Вариконды в зависимости oт величины управляющего сигнала увеличивают или уменьшают емкостный ток возбуждения, стабилизируя напряжение на выходе регулируемого асинхронного генератора. На выходе канала частоты ИЧ-УБ установлен серводвигатель СД, частота вращения,которого изменяется и воздействует на регулятор оборотов приводного двигателя ПД.На рис. 5.32 приведена схема регулирования, построенная на применении бесконтактных тиристорных ключей БТК, управляемых вычислительным элементом и подключающих отдельные секции батареиконденсаторов С1.С2…Сп в зависимости от изменения напряжения регулируемого асинхронного генератора.

Вычислительное устройство включает в себя суммирующее устройство СУ, формирующее сигнал по отклонению напряжения, импульсный элемент ИЭ, к спорый преобразует этот сигнал в импульсный и передает на вычислительный элемент ВЭ, суммирующий импульсы с учетом знака отклонения и обеспечивающий определенный закон регулирования напряжения.
Преобразованный таким образом сигнал поступает на ступенчатый преобразователь и далее — на ВТК.

Применение варикондов в системах регулирования асинхронного генератора привлекательно еще одним замечательным свойством — высоким сопротивлением постоянному току, что позволяет управлять их емкостью с ничтожно малой величиной мощности канала управления.

В работе описана такая схема (рис. 5.33) регулирования варикондов постоянным напряжением, пропорциональным — разности заданного и фактического напряжения в предположении, что нагрузка регулируемого асинхронного генератора остается неизменной, а частота его вращения меняется.Датчик частоты вращения 1 индукционного типа формирует высокочастотный сигнал (60 кГц) с частотой срывов, пропорциональной частоте вращения регулируемого асинхронного генератора. В преобразователе 2 сигнал прямоугольной формы преобразуется в импульсы со строго определенной длительностью и параметров этих импульсов (пауз) меняется в зависимости от временных среднее значение тока и, последовательно, напряжение на входе и выходе формирователя 5 сигнала
управления варикондами.

Для регулирования напряжения весьма эффективным может быть использование трансформатора

с переменным коэффициентом трансформации. На рис. 5.34 приведена схема стабилизации, построенная на изменении напряжения на конденсаторах возбуждения.
Если конденсаторы возбуждения включать на повышающую обмотку трансформатора с переменным коэффициентом трансформации к, можно уменьшить их габариты и массу. При обычной частоте (50 Гц) масса и габаритные размеры трансформатора оказываются весьма значительными.
Кроме того, для компенсации реактивного тока самого трансформатора требуются дополнительно емкости конденсаторов.Регулировать выходное напряжение асинхронного генератора можно также включением насыщающего реактора (L) (рис. 5.35).
При уменьшении напряжения генератора, связанного с увеличением нагрузки, насыщение реактора уменьшается, а его индуктивность увеличивается. Это приводит к уменьшению индуктивного тока и, как следствие, к увеличению напряжения регулируемого реактора. Как и в предыдущей схеме, в данном случае также необходимо предусматриваю» увеличение емкости конденсаторов.В качестве асинхронного генератора могут успешно применяться асинхронные машины с фазным ротором. При этом возможны следующие варианты включения:
1. Конденсаторы возбуждения включаются на зажимы статорной обмотки, параллельно нагрузке. Реостат через контактные кольца подключается к фазному ротору. Стабилизация частоты достигается одновременным изменением емкости конденсаторов и активного сопротивления реостата.
2. Конденсаторы возбуждения включаются в цепь фазного ротора, нагрузка — в цепь статора. Стабилизация частоты осуществляется изменением емкости конденсаторов возбуждения.
3. Конденсаторы возбуждения включаются в цепь статора или ротора через трансформатор или автотрансформатор с переменным коэффициентом трансформации (рис. 5.36). Регулирование частоты обеспечивается изменением коэффициента трансформации, при этом конденсаторы возбуждения включаются во вторичную цепь повышающего трансформатора,что значительно уменьшает необходимую емкость конденсаторов.[adsense_id=»1″]

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector