0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схемы блоков питания своими руками

Схемы блоков питания своими руками

У шины питания Vbus (+5 В) USB-порта по потребляемому от неё внешним устройством мощности параметры весьма скромные и если немного переборщить, то можно спалить материнскую плату персонального компьютера.

С помощью предлагаемой схемы блока питания для USB порта, можно подсоединить к компьютеру или ноутбуку внешнее USB-устройство, потребляющее большую мощность.

Схема достаточно проста в изготовлении в домашних условиях, минимум дефицитных деталей и настройки. Стабильна в работе.

Подборка схем и конструкций преобразователей напряжения изготовленных своими руками.

Рано или поздно перед радиолюбителем возникает проблема изготовления универсального БП, который пригодился бы на все случаи жизни. То есть имел достаточную мощность, надёжность и регулируемый в широких пределах, к тому же защищал нагрузку от чрезмерного потребления тока при испытаниях и не боялся коротких замыканий.

Подборка радиолюбительских схем и конструкций стабилизаторов напряжения собранных своими руками.

Основу аналоговой части составляет дифференциальный усилитель, собранный на операционном усилителе DA1. Конструкция его произвольная. Все зависит от вкуса и способностей радиолюбителя

Им можно подсоединить любую радиолюбительскую разработку с напряжением от 1 до 35 В и которой не боится больших токов нагрузки, поскольку введена токовая защита

Представляю вниманию радиолюбителей варианты схем и конструкций простых и не очень , удобных и надежных лабораторных блоков питания для домашней мастерской. В просторах интернета, можно найти много схем лабораторных БП, поэтому данные схемы никак не претендует на шедевр, а призвана лишь помочь радиолюбителям, немного оснастить свою мастерскую или рабочее место. Также рассмотрены варианты переделки компьютерных ATX блоков питания в лабораторные

По структуре предлагаемое вниманию читателей разработка не новодел: выпрямитель, — конденсаторный фильтр — полумостовой преобразователь постоянного напряжения в переменное (с понижающим трансформатором) — выпрямители — фильтры — стабилизаторы

Проще некуда, схема состоит из понижающего трансформатора, выпрямительного моста на Д242, стабилизатора напряжения и трех транзисторов КТ827

Представленные ниже радиолюбительские схемы защиты блоков питания или зарядных устройств могут совместно работать практически с любыми источниками — сетевыми, импульсными и аккумуляторными батареями. Схемотехническая реализация этих конструкция относительна проста и доступна для повторения даже начинающим радиолюбителем.

Также для защиты БП можно использовать схемы ограничителя тока и защиту нагрузки от возможного перенапряжения.

Рассмотрено несколько вариантов схем защиты от переполюсовки, в.т.ч быстродействующая схема зашиты на полевом транзисторе, которая проверена в работе в конструкции автомобильного ЗУ собранного своими руками из компьютерного БП и главное она не требуют почти никакой настройки и регулировки.

Эта схема регулятора тока предельно проста и выполнена на доступной элементной базе и проста в управлении

У меня реализована такая идея. Перематываете трансформатор максимально большой мощности (из имеющихся у вас) так, чтобы сделать восемь вторичных обмоток

Эту схему блока питания вы можете использовать для запитки цифровых устройств. Схема дополнена вольтметром для контроля и регулировки параметров

Cхемы умножителей напряжения позволяют значительно снизить вес и габариты финального устройства. Для понимания работы любого умножителя напряжения, рассмотрим принципы построения таких устройств. Их можно условно поделить на симметричные и несимметричные.

С выходной мощностью до 220 Ватт, в качестве батареи взяли аккумулятор от автомобиля

Его можно использовать для запитки фотоэлектронного умножителя, но от него можно запитать счетчик Гейгера и другие высоковольтные приборы.

Роль регулирующего элемента в схеме выполняет мощный транзистор, причем конструкция на столько проста, что ее может повторить любой, даже неопытный радиолюбитель, затратив при этом минимум времени и средств

Данная радиолюбительская разработка моментально уменьшает питание до нуля на обоих плечах, и таким образом обладает триггерным эффектом

Его можно использовать для любых радиотехнических исполнений с напругой 4,5-6 В, 9 В и током потребления до 500 мА

Читайте так же:
Регулировка регулятор давления отопления

Этот БП имеет параметрический стабилизатор тока и компенсационный стабилизатор напряжения. Поэтому он не боится короткого замыкания по выходу, и выходной транзистор стабилизатора практически не может выйти из строя

В момент включения блока питания в сеть осуществляется выпрямление переменного напряжения электросети диодным мостом, пульсацию от которого сглаживается емкостным фильтром на конденсаторах. Для снижения величины тока заряда, проходящего через эти конденсаторы, в схему добавлен резистор. Затем выпрямленное напряжение поступает на полумостовой инвертор, построенный на транзисторах.

Краткие теоретические сведения о построение и работе источников бесперебойного питания, а также рассмотрена конструкция самодельного ИБП

Электронная конструкция с некоторой периодичностью разряжает мощную конденсаторную батарею на индуктор, потом на следующий, и так по цепочке

Сетевое напряжение поступает через предохранитель на первичную обмотку силового трансформатора. С его вторичной обмотки снимем уже пониженное напряжение на 20 вольт при токе до 25А. При желании этот трансформатор можно сделать своими руками на основе силового трансформатора от старого лампового телевизора.

В российской глубинке до сих пор случается частое отключение электроэнергии, что серьезно меняет устаканившийся образ жизни в нелучшую сторону. Решить возникшую проблему очень легко.

Рано или поздно у любого радиолюбителя возникнет надобность в мощном БП как для проверки различных электронных узлов и блоков, так и для подключения мощных радиолюбительских самоделок.

Регулировать значения уровня напряжение питания можно с помощью регуляторов с широтно-импульсной модуляцией. Преимущество такой настройки состоит в том, что выходной транзистор работает в режиме ключа и может быть только в двух состояниях — открытом или закрытом, что исключает его перегрев, а значит использование большого радиатора и как следствие снижает расходы на электроэнергию.

Аккумуляторную батарею любого мобильного компьютера, требуется периодически заряжать, а как это можно сделать находясь на отдыхе или на рыбалке. Очень даже просто, вам достаточно собрать и использовать обычный автомобильный адаптер для бортовой сети автомобиля, собрать который очень легко и просто.

Этот преобразователь с двухполярным питанием отлично подойдет для питания УНЧ средней мощности до 150 ватт, но если поменять ключи на более мощные можно получить и более высокие значения.

Для проверки и регулировки мощных блоков питания необходима низкоомная регулируемая нагрузка с допустимой мощностью рассеивания до сотни ватт. Применение переменных сопротивлений не всегда реально, в основном из-за мощности допустимой рассеивания.

Если у вас есть всего один мощный транзистор, то этого вполне достаточно, чтобы собрать простой блок питания с выходным напряжением 9В и с приемлемыми характеристиками, кроме того рассмотрим в рамках данной статьи конструкции и поинтересней.

В сельской местности для безопасного использования бытовой техники, требуется однофазный стабилизатор напряжения 220В, который при сильной просадки напряжения в сети поддерживает на выходе номинальное выходное напряжение в 220 вольт.

Хочу предложить простую схему самодельного блока питания для автомагнитолы. Она содержит всего два транзистора, но в ней имеется защита от короткого замыкания.

Очень важным параметром самодельных блоков питания является внутреннее сопротивление источника питания, это такая количественная характеристика БП, которая описывает величину энергетических потерь при прохождении через блок питания нагрузочного тока.

В ряде проведения некоторых радиолюбительских экспериментов требуется контролировать основные параметры блоков питания для этого я собрал приставку цифрового амперметра и вольтметра для БП, но затем я решил добавить функций, выполняемых микроконтроллером и повесил на него функцию измерения температуры силовых транзисторов. Ведь вполне может появиться ситуация применения БП на пределе его технических параметров и тут появляется опасность теплового пробоя полупроводников радиокомпонентов.

Эти устройства стали обязательным атрибутом оргтехники, бытовой техники и многих радиолюбительских приборов. Это устройство защищает цепи питания электронной аппаратуры от высокочастотных и импульсных помех, возможных скачков напряжения.

Читайте так же:
Регулировка створки алюминиевых окон

Иногда, для различных радиолюбительских экспериментов, просто необходим источник высокого напряжения. Для этих целей , как нельзя лучше подходят трансформаторы высокого напряжения. Об одном из них из извлеченного из старого телевизора мы поговорим в этой статье.

Для радиолюбительских самоделок на микроконтроллерах, модулей считывания SD-карт и некоторых других устройств требуется постоянное напряжение 3,3 вольта. Получить его можно как от литиевой батареи, так и от самодельных блоков питания и различных DC-DC преобразователей на ИМС

Во многих современных радиолюбительских устройствах и разработках применяются регуляторы напряжения. Они необходимы для регулирования и стабилизирования напряжения в определенном интервале. С помощью них входное напряжение понижают до необходимого. Многие интегральные микросхемы стабилизаторы напряжения, например, LM708, LM317 и им аналогичные, имеют один большой минус. Они не обладают большим выходным током. В этом случае схему подключения стабилизатора следует немного дополнить, поставив усилитель тока, например на мощном транзисторе.

Трансформаторные питающие источники изменяют структуру напряжения за счет работы силового трансформатора, питающегося от сети переменного тока напряжением 220 вольт, в котором осуществляется понижение амплитуды синусоидальной гармоники переменного напряжения, следующей далее на выпрямительное устройство, состоящее обычно из диодов, включенных по мостовой схеме.

КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ ИМПУЛЬСНЫЙ БП

За время существования радиодела как-то вошло и устоялось в сознании большинства, что если есть необходимость постоянного изменения напряжения электрического тока для радиолюбительских нужд, то обязательно нужен лабораторный блок питания с трансформатором «на железе». Всё правильно, верно — хорош во всех отношениях. Но только для домашнего пользования, объем и масса напрочь лишают его мобильности. Казалось бы, не беда, появились всевозможные импульсные блоки питания. Компактные, лёгкие и достаточно мощные. Вот только переделок (вмешательства в существующую принципиальную электрическую схему) с целью организации функции изменения выходного напряжения, они, мягко говоря, не любят. Буду категоричен – полноценная переделка под силу только опытному специалисту.

Вот и заказал в интернет магазине AliExpress парочку модулей регулирующих напряжение. Стоимостью 40 рублей штука. Через месяц прибыли.

AliExpress модули регулирующие напряжение

Действительно компактное изделие (43 х 21 х 14 мм), которое в принципе, возможно, легко добавить к любому имеющемуся импульсному блоку питания от отработавших своё факсов, принтеров, мониторов и т.д.

Купил готовые модули регулирующие напряжение

Основополагающим элементом конструкции является микросхема регулятор серии LM2596 — это монолитная интегральная схема, которая обеспечивает все активные функции понижающего импульсного стабилизатора, поддерживающая 3 А в линии нагрузки. Заявленные производителем основные характеристики регулятора: входное напряжение от 3,2 В до 40 В, выходное напряжение от 1,25 В до 35 В. В примечании есть упоминание, что при длительной работе необходима установка охлаждающего радиатора. С обратной стороны платы, напротив корпуса микросхемы рассмотрел большое количество едва заметных отверстий вероятно призванных способствовать охлаждению м/с, но проку от них думаю не много.

чертёж радиатора для микросхемы

Нужен радиатор. Не сразу, но сообразил, как его тут можно установить и главное закрепить по месту. Родился вот этот эскиз – руководство по изготовлению и установке радиатора. Материал, из которого изготавливается непосредственно радиатор, любой с хорошей теплопроводностью (лучше медь или алюминий), толщиной 1 – 2 мм. Крепление радиатора – прижим делать толщиной 2 – 2,5 мм.

Что нашлось подходящее из того и сделал. Радиатор из алюминия, прижим из меди. Правда, подобного способа крепления ранее не встречал, но тем не менее в данной конструкции уверен. По любому лучше так, чем никак.

На место (корпус микросхемы) встаёт без проблем – ровно и устойчиво. Перед установкой смазал термопастой. Винт прижима закрутил до хорошего упора и не более того.

КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ ИМПУЛЬСНЫЙ БП

Крутить такой подстроечник отвёрткой хлопотно, поэтому по диаметру головки винта подобрал нечто подобие ручки. А ещё очень кстати тут будет миниатюрный вольтметр, опять же из Китая. Диапазон измерений постоянного тока 2.5-30 В, точность измерения 1% (+/-1 цифра), размеры 23x15x10 мм. В качестве источника питания взял ИБП от телефона – факса, выходное напряжение 24 вольта, ток до 0,5 ампера. У него на выходе изначально имелся переменный подстроечный резистор позволяющий изменять выходное напряжение на несколько вольт. Поставил вместо подстроечника 5 кОм переменный резистор 10 кОм, один из прилегающих к нему постоянных резисторов смд 4,7 кОм менял в разных вариантах уменьшения их сопротивления. Ниже 3,3 кОм наблюдался полный срыв генерации, от 3,3 до 4 кОм генерация нестабильная. Так, что можно смело сказать, имел напрасные хлопоты. К нему на выход подключил рассмотренный выше регулятор напряжения, на выход которого в свою очередь вольтметр. А для контроля того, что на нём увижу — проверенный мультиметр.

Читайте так же:
Регулировка пластиковых окон сзао

Видео

Всё работает. Разница с мультиметром 0,1 В, «пропало» в итоге 2 вольта (вместо 24 имеем 22 В). Это нормально. При этом замечу, что схема с многооборотным подстроечником подходит только для того, чтобы периодически устанавливать нужное выходное напряжение, а для постоянной регулировки необходим нормальный переменный резистор. Так что менять однозначно. Наглядной пробой изменения выходного напряжения ИБП при помощи китайского регулятора доволен. Обязательно воплощу полученный опыт в изготовление мобильного лабораторного импульсного БП со всеми регулировками. Автор Babay iz Barnaula.

Форум по обсуждению материала КАК СДЕЛАТЬ РЕГУЛИРУЕМЫЙ ИМПУЛЬСНЫЙ БП

Противопомеховые фильтры — параметры, свойства, выбор подходящей схемы и радиоэлементов.

Предусилитель со стерео темброблоком для усилителя мощности, собранный на ОУ 4558.

Устройство для использования разъёма USB в качестве прикуривателя — разборка и схема.

Информация по самостоятельному ремонту и прошивке транзистор-тестера LCR-T4(T3) NoStripGrid.

Лабораторный блок питания своими руками

Подача напряжения питания для различной электронной аппаратуры может осуществляться не только от заводских устройств. Блок питания (БП) своими руками можно сделать и в домашних условиях. В том случае, когда такой аппарат нужен для постоянной работы с различными напряжениями при регулировке: усилителей, генераторов и других самодельных схем, желательно, чтобы он был лабораторным.

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.

Читайте так же:
Регулировка дверей шкафа electrolux

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.

Изготовление печатной платы и сборка

Схема подразумевает изготовление трёх печатных плат. Платы подбираются для корпуса Kradex Z4A.

Платы выполнены из фольгированного гетинакса путем фотопечати и протравки дорожек.

Настройка блока питания

Правильно собранное устройство не нуждается в особой регулировке. Необходимо лишь подстроить диапазоны регулировки тока и напряжения.

Четыре операционных усилителя в микросхеме LM324 осуществляют регулировку тока и напряжения. Микросхема питается через фильтр, собранный на L1, C1 и С2.

Чтобы настроить схему регулировки, нужно подобрать элементы, помеченные звёздочкой, для маркировки регулирующих диапазонов.

Индикация

Для индикации обычно используются устройства индикации и модуль измерения на микроконтроллерах. Питание таких контроллеров лежит в пределах 3-5 В.

Рекомендации по улучшению надежности

Лабораторный бп должен простоять под нагрузкой не менее 2 часов. После этого проверяют температуру корпусов трансформаторов, работу теплоотводов. При намотке трансформаторов для снижения шума при работе намотку обмоток осуществляют плотно виток к витку. Готовую конструкцию заливают парафином. При установке элементов на радиаторы места контактов промазывают теплопроводящей пастой.

Читайте так же:
Установка ремонт регулировка пластиковых окон

В корпусе просверливают ряд отверстий, напротив теплоотводов, сверху дополнительно устанавливают кулер.

Защита блока питания

Токовая стабилизация (защита) микросхемы LM324 срабатывает при превышении установленного токового порога. В этом случае на микросхему приходит сигнал о понижении напряжения. Красный светодиод служит индикатором повышения напряжения или возникновения короткого замыкания. В рабочем режиме светится зеленый светодиод.

Советы по оформлению корпуса

Корпус Kradex Z4A позволяет выводить элементы управления и индикации, как на лицевую, так и на боковые панели. Ручки регулировки, индикатор лучше всего устанавливать на лицевую панель. Разъем для выходного напряжения можно крепить где угодно.

Собранный своими руками лабораторный блок питания с использованием мощных полевых транзисторов и импульсных трансформаторов незаменим для работы. В качестве индикаторов желательно использовать цифровые электронные ампервольтметры.

Видео

Мощный блок питания на TL494

TL494 – это семейство интегральных схем, выполняющих функции преобразователя напряжения, работающего по принципу широтно-импульсной модуляции (ШИМ).

В качестве аналогов ИС TL494 следует рассматривать:

1. Микросхема российского производства — К1006ЕУ4;

2. Серия TL594 — имеет лучшую точность;

3. Серия TL598 — отличается наличием двухтактного повторителя.

Блок схема (основные компоненты) микросхемы TL494 выглядит следующим образом.

Рис. 1. Блок схема микросхемы TL494

В использовании чаще всего встречаются две разновидности ИС серии TL494:

1. TL494CN – выполнена в корпусе DIP16, рассчитана на работу в условиях от 0 до 70°C;

2. TL494IN – тот же корпус, но диапазон рабочих температур – от минус 25 до плюс 85°С.

Рис. 2. Распиновка микросхемы

Наиболее частым является ее применение в составе импульсных блоков питания, управляемых приводов, регуляторов напряжения и других устройств, требующих ШИМ-модуляции. Самый яркий пример – блок питания ПК формата ATX.

Нагляднее всего работу ИС TL494 показывает график входных и выходных напряжений ниже.

Рис. 3. График входных и выходных напряжений

Блок питания на TL494 своими руками

Принципиальная схема самого блока питания здесь.

Она отличается своей простотой и практичностью. Правда трансформатор придется мотать самостоятельно.

Итак, данный импульсный блок питания обеспечивает максимальную выходную мощность не более 500 Вт (номинальная – около 300 Вт), питается от сети переменного тока (выпрямление напряжения осуществляется на диодном мосту) и дает частоту преобразования в 30 Гц.

Преимущество данной схемы в том, что большая часть радиодеталей может быть взята, например, из неисправного блока питания компьютера (ATX).
Трансформатор TR1 состоит из четырех обмоток (все они имеют по 50 витков. Провод – 0,5 мм) и ферритового сердечника.

Второй трансформатор (TR2) имеет три обмотки. Первая – 110 витков, 0,8 мм, третья – 12 витков тем же проводом, а вторая определяет выходное напряжение и потому наматывается исходя из своих потребностей. Витки рассчитываются из соотношения 1 виток – 2 вольта (на выходе имеется удвоитель напряжения).

Перемотка может быть выполнена на каркасах трансформаторов, взятых из тех же блоков ATX.

Резисторы R1, R2, R4 и R5 лучше всего выбирать с мощностью рассеивания не менее 1 Вт, а транзисторы VT3 и VT4 нужно установить на радиаторы площадью не менее 50 см 2 .

Еще варианты схем БП на TL494

Большинство из них – это лабораторные блоки питания. Они позволяют регулировать напряжение и силу тока с высокой точностью.

При сборке особое внимание стоит уделить полевым транзисторам, они должны быть вынесены на радиатор, желательно с принудительным воздушным охлаждением (обдуваться вентилятором).

Вольтметры и амперметры по желанию можно заменить на цифровые индикаторы.

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector