0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулируемый источник питания своими руками

Регулируемый источник питания своими руками

Схема в принципе не сложная, все детали легко размещаются на небольшой печатной плате. Сердце схемы стабилизатор напряжения типа LM338K.

Диодный мост и стабилизатор LM338K установлены на мощном теплоотводе.

Ниже, для желающих повторить конструкцию, показан рисунок печатной платы.

На ОУ LM358 выполнен регулируемый стабилизатор напряжения. С вывода переменного сопротивления R2 на его прямой вход следует опорное напряжение, величина которого задается стабилитроном, а на инверсный вход идет потенциал отрицательной ОС с эмиттера второго транзистора через делитель напряжения на сопротивлениях R10 и R7.

Отрицательная ОС создает баланс напряжений на входах операционного усилителя LM358, компенсируя воздействие различных факторов. Путем вращения ручки переменного сопротивления R2 появляется изменение выходного напряжения блока питания.

Модуль защиты от перегрузки по току выполнен на другом операционном усилителе, имеющимся внутри LM358 , который применяется в роли компаратора. На его прямой вход через R14 следует напряжение с токового датчика тока нагрузки R13, а на инверсный вход идет опорное напряжение.

До момента времени пока падение напряжения, задаваемое током нагрузки на R13, меньше опорного, потенциал на выходе ОУ практически нулевой. Если ток нагрузки превысит заданный, потенциал на выходе увеличится до напряжения питания и через резистор R9 пойдет ток, который способствует открытию транзистора VT1 и загорится светодиод. Диод VD3 начнет пропускать ток и через резистор R11 шунтирует электрическую цепь положительной ОС. Транзистор VT1 включает R12 параллельно стабилитрону VD1, и напряжение на выходе блока питания падает почти до нуля из-за запирания транзистора VT2.

Еще раз подключить нагрузку можно если кратковременно отключить сетевое напряжение или нажав на тумблер SA1. Для защиты второго транзистора VT2 от обратного напряжения, поступающего с С5, которое появляется на короткий момент времени при отключении нагрузки от блока питания, в конструкцию введен диод VD4.

Конструкция этого регулируемого источника питания была позаимствована из журнала Радио 9 2005

Конструкция рассмотренная чуть ниже, позволяет от питать любую радиолюбительскую самоделку с напряжением до 35 вольт и которая не боится больших токов нагрузки, потому что имеется токовая защита. Основа схемы источника регулятора напряжения отечественная микросхема типа КР142ЕН12, которая обладает внутренним мощным транзистором отдающим в нагрузку ток до 5 А. При номинале сопротивлении R5 равным 0,3 Ом максимальный ток нагрузки будет около 2,8 А.

Если ток источника питания возрастет выше, сработает защита, реализованная на оптроне VD6. Когда напряжение на сопротивление R5 возрастет, загорится светодиод внутри оптрона. Откроется динисторный тиристор и пропустит отрицательное напряжение на восьмой вывод микросхемы, произойдет падение напряжения на выходе стабилизатора до уровня 1 Вольт. Вернуть пропавшее напряжение на выходе источника питания можно с помощью нажатия тумблера SA2. Изменяют напряжение на выходе сопротивлением R4. Для сглаживания по низкой и высокочастотной составляющей применен дроссель и емкости С2, С3. Использование оптрона в данной схеме регулируемого источника питания повышает надежность и быстродействие защитного модуля.

В регулируемом источнике питания использованы следующие радиокомпоненты. Трансформатор любой с выходным напряжением 35 В и током не ниже 3,5А. Вместо отечественной микросборки К142ЕН12 можно использовать ее зарубежный аналог LM317Т.

Печатную плату схемы источника лучше всего перерисовать в программе Sprint Layout и сделать своими руками с применением технологии ЛУТ.

Читайте так же:
Регулировка цвета экрана монитора

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2. 1,3 В, но иногда необходимо напряжение 0,5. 1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2. 37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.

Рис.2. Регулируемый БП на ИМС КР142ЕН12А

Мощность, рассеиваемая микросхемой с теплоотводом, не должна превышать 10 Вт. Резисторы R3 и R5 образуют делитель напряжения, входящий в измерительный элемент стабилизатора, и подбираются согласно формуле:

U вых = U вых.min ( 1 + R3/R5 ).

На конденсатор С2 и резистор R2 (служит для подбора термостабильной точки VD1) подается стабилизированное отрицательное напряжение -5 В. В авторском варианте напряжение подается от диодного моста КЦ407А и стабилизатора 79L05, питающихся от отдельной обмотки силового трансформатора.

Для защиты от замыкания выходной цепи стабилизатора достаточно подключить параллельно резистору R3 электролитический конденсатор емкостью не менее 10 мкФ, а резистор R5 зашунтировать диодом КД521А. Расположение деталей некритично, но для хорошей температурной стабильности необходимо применить соответствующие типы резисторов. Их надо располагать как можно дальше от источников тепла. Общая стабильность выходного напряжения складывается из многих факторов и обычно не превышает 0,25% после прогрева.

После включения и прогрева устройства минимальное выходное напряжение 0 В устанавливают резистором Rдоб. Резисторы R2 (рис.2) и резистор Rдоб (рис.3) должны быть многооборотными подстроечными из серии СП5.

Рис.3. Схема включения Rдоб

Возможности по току у микросхемы КР142ЕН12А ограничены 1,5 А. В настоящее время в продаже имеются микросхемы с аналогичными параметрами, но рассчитанные на больший ток в нагрузке, например LM350 — на ток 3 A, LM338 — на ток 5 А. Данные по этим микросхемам можно найти на сайте National Semiconductor [1].

В последнее время в продаже появились импортные микросхемы из серии LOW DROP (SD, DV, LT1083/1084/1085). Эти микросхемы могут работать при пониженном напряжении между входом и выходом (до 1. 1,3 В) и обеспечивают на выходе стабилизированное напряжение в диапазоне 1,25. 30 В при токе в нагрузке 7,5/5/3 А соответственно. Ближайший по параметрам отечественный аналог типа КР142ЕН22 имеет максимальный ток стабилизации 7,5 А.

При максимальном выходном токе режим стабилизации гарантируется производителем при напряжении вход-выход не менее 1,5 В. Микросхемы также имеют встроенную защиту от превышения тока в нагрузке допустимой величины и тепловую защиту от перегрева корпуса.

Данные стабилизаторы обеспечивают нестабильность выходного напряжения 0,05%/В, нестабильность выходного напряжения при изменении выходного тока от 10 мА до максимального значения не хуже 0,1 %/В.

Читайте так же:
Как синхронизировать с камерой внешнюю вспышку

На рис.4 показана схема БП для домашней лаборатории, позволяющая обойтись без транзисторов VT1 и VT2, показанных на рис.2. Вместо микросхемы DA1 КР142ЕН12А применена микросхема КР142ЕН22А. Это регулируемый стабилизатор с малым падением напряжения, позволяющий получить в нагрузке ток до 7,5 А.

Рис.4. Регулируемый БП на ИМС КР142ЕН22А

Максимально рассеиваемую мощность на выходе стабилизатора Рmax можно рассчитать по формуле:

Р max = (U вх — U вых ) I вых ,
где U вх — входное напряжение, подаваемое на микросхему DA3, U вых — выходное напряжение на нагрузке, I вых — выходной ток микросхемы.

Например, входное напряжение, подаваемое на микросхему, U вх =39 В, выходное напряжение на нагрузке U вых =30 В, ток на нагрузке I вых =5 А, тогда максимальная рассеиваемая микросхемой мощность на нагрузке составляет 45 Вт.

Электролитический конденсатор С7 применяется для снижения выходного импеданса на высоких частотах, а также понижает уровень напряжения шумов и улучшает сглаживание пульсаций. Если этот конденсатор танталовый, то его номинальная емкость должна быть не менее 22 мкФ, если алюминиевый — не менее 150 мкФ. При необходимости емкость конденсатора С7 можно увеличить.

Если электролитический конденсатор С7 расположен на расстоянии более 155 мм и соединен с БП проводом сечением менее 1 мм, тогда на плате параллельно конденсатору С7, ближе к самой микросхеме, устанавливают дополнительный электролитический конденсатор емкостью не менее 10 мкФ.

Емкость конденсатора фильтра С1 можно определить приближенно, из расчета 2000 мкФ на 1 А выходного тока (при напряжении не менее 50 В). Для снижения температурного дрейфа выходного напряжения резистор R8 должен быть либо проволочный, либо металло-фольгированный с погрешностью не хуже 1 %. Резистор R7 того же типа, что и R8. Если стабилитрона КС113А в наличии нет, можно применить узел, показанный на рис.3. Схемное решение защиты, приведенное в [2], автора вполне устраивает, так как работает безотказно и проверено на практике. Можно использовать любые схемные решения защиты БП, например предложенные в [3]. В авторском варианте при срабатывании реле К1 замыкаются контакты К1.1, закорачивая резистор R7, и напряжение на выходе БП становится равным 0 В.

Печатная плата БП и расположение элементов показаны на рис.5, внешний вид БП — на рис.6. Размеры печатной платы 112×75 мм. Радиатор выбран игольчатый. Микросхема DA3 изолирована от радиатора прокладкой и прикреплена к нему с помощью стальной пружинящей пластины, прижимающей микросхему к радиатору.

Рис.5. Печатная плата БП и расположение элементов

Конденсатор С1 типа К50-24 составлен из двух параллельно соединенных конденсаторов емкостью 4700 мкФх50 В. Можно применить импортный аналог конденсатора типа К50-6 емкостью 10000 мкФх50 В. Конденсатор должен располагаться как можно ближе к плате, а проводники, соединяющие его с платой, должны быть как можно короче. Конденсатор С7 производства Weston емкостью 1000 мкФх50 В. Конденсатор С8 на схеме не показан, но отверстия на печатной плате под него есть. Можно применить конденсатор номиналом 0,01. 0,1 мкФ на напряжение не менее 10. 15 В.

Рис.6. Внешний вид БП

Диоды VD1-VD4 представляют собой импортную диодную микросборку RS602, рассчитанную на максимальный ток 6 А (рис.4). В схеме защиты БП применено реле РЭС10 (паспорт РС4524302). В авторском варианте применен резистор R7 типа СПП-ЗА с разбросом параметров не более 5%. Резистор R8 (рис.4) должен иметь разброс от заданного номинала не более 1 %.

Читайте так же:
Хускварна 240 регулировка подачи масла

Блок питания обычно настройки не требует и начинает работать сразу после сборки. После прогрева блока резистором R6 (рис.4) или резистором Rдоп (рис.3) выставляют 0 В при номинальной величине R7.

В данной конструкции применен силовой трансформатор марки ОСМ-0,1УЗ мощностью 100 Вт. Магнитопровод ШЛ25/40-25. Первичная обмотка содержит 734 витка провода ПЭВ 0,6 мм, обмотка II — 90 витков провода ПЭВ 1,6 мм, обмотка III — 46 витков провода ПЭВ 0,4 мм с отводом от середины.

Диодную сборку RS602 можно заменить диодами, рассчитанными на ток не менее 10 А, например, КД203А, В, Д или КД210 А-Г (если не размещать диоды отдельно, придется переделать печатную плату). В качестве транзистора VT1 можно применить транзистор КТ361Г.

  1. http://www.national.com/catalog/AnalogRegulators_LinearRegulators-StandardNPN_PositiveVoltageAdjutable.html
  2. Морохин Л. Лабораторный источник питания//Радио. — 1999 — №2
  3. Нечаев И. Защита малогабаритных сетевых блоков питания от перегрузок//Радио. — 1996.-№12

Автор: А.Н. Патрин, г.Кирсанов

Мнения читателей
  • Иван / 21.02.2017 — 01:33

Подскажите пожалуйста как сделать блок для автомагнитолы

Габариты для меня не критичны. Схема хорошая, буду повторять. Когда занимаешься ремонтом всякой бытовой хрени — самое то.

Я нуб в этом пока, хочу понять.А как регулировать напряжение БП, наверное R7? а его как-то вывести на панель можно же? И наверное можно подключить вольтметр, чтоб видеть напряжение на выходе? Его наверное подключать надо к выходу)? А ток регулировать можно?

Ну что замолчали ещё ктото чтонибудь пукнет или нет.А схемка класная на самом деле

Ремонтируя радиостанции лучше использовать трансы, от них нет ВЧ помех.

схема на рис 2 заслуживает внимания и некакие импульсники её не заменят импульсники в любительских условиях чепуха лучше делать трансформаторные проще и надёжнее и ремоттопригодные

еблан собирай инвертор

а схему проще не видел?

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Конструктор для сборки понижающиего модуля (регулируемого блока питания) на LM338K

1.JPG» />

  • Цена: $7,3

В сегодняшнем обзоре речь пойдет об очередном конструкторе после сборки которого получится понижающий модуль на LM338K, а проще говоря — регулируемый блок питания 🙂 Причиной его покупки стал мой интерес к конструкторам подобного рода, а так же возможность использовать собранный гаджет в последующем.

Продавец конструктора был выбран совершенно случайно, но, несмотря на это, сработал он неплохо. После обмена парочкой сообщений мы договорились, что посылка будет отправлена с полноценным треком (естественно, за дополнительную плату). Отправил он ее на следующий день после оплаты. Если кому-нибудь интересен маршрут следования посылки из Китая в Беларусь, то посмотреть его можно здесь.

На почте мне выдали небольшой полиэтиленовый пакет серого цвета внутри которого и находился заказанный мною набор для самостоятельной сборки. Поставляется он в «заводской» упаковке, которая представляет собой небольшой запаянный со всех сторон пакет.

Срезав одну из сторон можно заглянуть внутрь и посмотреть на содержимое посылки. Внутри оказалась монтажная плата, крепление индикатора, четыре винта и парочка резисторов, а так же еще два пакетика поменьше.

Высыпаем содержимое всех пакетиков на стол. Получается небольшая кучка разнообразных радиодеталей.

Некоторые детали пришлось извлекать из вентилятора будущей системы активного охлаждения:

Основной элемент будущего блока питания — регулируемый стабилизатор LM338K. Данный стабилизатор напряжения, производства Texas Instruments, является универсальной интегральной микросхемой, которая может быть подключена многочисленными способами для получения высококачественных цепей питания. Интегральная микросхема LM338K выпускается в двух вариантах корпусов — это в металлическом корпусе TO-3 (как раз наш случай) и в пластиковом TO-220.

Читайте так же:
Регулировка замка браслета часов

Технические характеристики стабилизатора LM338K:
— Обеспечения выходного напряжения от 1,2 до 32 В;
— Ток нагрузки до 5 A;
— Наличие защиты от возможного короткого замыкания;
— Надежная защита микросхемы от перегрева;
— Погрешность выходного напряжения 0,1%.

Выглядит она следующим образом:

К качеству изготовления элементов конструктора претензий у меня нет. Все, включая монтажную плату, выглядит прилично, откровенного брака нигде не видно. Разве что за время транспортировки ножки почти всех элементов погнулись, но на работоспособности конструкции это никак не скажется.

В принципе, больше ничего интересного в отдельно валяющихся элементах нет, а значит можно переходить к сборке блока питания. Как обычно, начинаем с самых маленьких элементов. Хотя тут надо сказать, что маленьких элементов тут не так уж и много, тут вообще монтажных элементов не очень много. Так что данный набор отлично подойдет даже начинающему радиолюбителю 🙂 Сперва резисторы, диоды, клеммник, диодный мост KBL608, стабилизатор напряжения LM7812.

Кстати, помните те резисторы, которые лежали отдельно от других элементов? Так вот, в комплекте их четыре, а нужен только один… А вот диодов в комплекте два, хоть на плате разметка под три. Такое чувство, что комплектовал набор не сильно трезвый китаец 🙂

Следующим этапом была установка огромных конденсаторов, сбрасываемого предохранителя 30V3A, а так же переключателя на выходные контакты.

И в завершение устанавливаем все остальное: стабилизатор вместе с радиатором, потенциометр, диод, вентилятор, LED индикатор, выходные контакты и так далее. После окончательной сборки получается довольно симпатичный блок питания на медных ножках, который выглядит следующим образом:

Для того, чтобы прикрепить индикатор вольтметра в корпусе вентилятора необходимо проделать отверстия, так как комплектные саморезы могут расколоть пластик.

Ну что же, осталось дело за малым — проверить как работает собранное устройство. Но перед тем, как это сделать, думаю, будет не лишним ознакомить вас с его характеристиками (гуглоперевод текста со странички продавца, но все более-менее понятно):
— Вход постоянного тока: 3-35 В;
— Вход переменного тока: 1-25 В;
— Выход постоянного тока: 1,2-30 В;
— Максимальный ток: 3 А;
— Ввод и вывод минимального перепада напряжение: 3 В;
— Максимальная потребляемая мощность: 50 Вт;
— Размер: 9.6cm * 5.8cm;
— Вес: 146.6g.

Теперь, зная все это, подключаем его к блоку питания на 12В — вентилятор начинает крутиться, а на вольтметре появляются первые данные.

Питание собранного модуля осуществляется от блока питания 12В 5А. Без нагрузки потребление активной энергии составило 2,6Вт, максимальное напряжение на выходных контактах модуля — 9,16В.

Дабы установить соответствие этих данных истине воспользуемся мультиметром.

Попробуем немного уменьшить напряжение.

Как видно, проблем с регулировкой нет — все в пределах заявленных характеристик. Минимальное напряжение, которое способен выдать модуль — 1,16В.

При данном напряжении диод, свидетельствующий о работе выходных клемм не светится 🙂 Кроме того, для их включения/отключения имеется специальный переключатель, правда, зачем он вообще надо я не особо понял…

Подводя итог всему, что тут было написано, хочу сказать, что данный набор для самостоятельной сборки можно рекомендовать к приобретению, как минимум, по двум причинам. Во-первых, процесс его сборки будет интересен всем тем, кто увлекается подобными вещами. Во-вторых, собранный модуль можно использовать в последующем в случае необходимости подачи питания, скажем в 6-9В и т.д. Лично меня данная покупка удовлетворила полностью, жаль только, что некоторых деталей изначально не хватало…

Читайте так же:
Регулировка арматуры сливного бачка унитаза сантек

Питание

В этом разделе собраны схемы для питания электронной аппаратуры: стабилизаторы, блоки питания, DC-DC преобразователи и подобные.

Регулируемый блок питания на LM317

24 декабря 2020 — Admin

Вид блока питания

Одна из простейших схем блоков питания на стабилизаторе LM317. LM317 — линейный регулируемый стабилизатор положительного напряжения. Представляет собой трёхвыводную микросхему: вход, выход и управляющий вывод. Содержит встроенную защиту от перегрузки. Аналоги: LM350, LM338 (отличаются максимальным током нагрузки), отечественный аналог КР142ЕН12А.

Сборка блока питания

13 января 2020 — Admin

Макет платы

Наконец мы добрались до конца серии статей о блоке питания с регулируемым током срабатывания защиты. Тем, кому хватило терпения прочитать всё это, нужно давать приз :). В этой статье — сборка готового изделия, в том числе изготовление печатной платы.

Настройка параметров блока питания

7 января 2020 — Admin

Девочка с паяльником

Продолжаем разбирать схему блока питания с регулируемым током защиты. Предыдущая статья была посвящена устранению недостатков защиты нашего блока. На этом, собственно, мы закончили изучать особенности и принципы работы схемы, и в этой статье переходим к её настройке.

Устраняем недостаток защиты блока питания

20 августа 2019 — Admin

Устраняем недостатки

Продолжаем разбирать схему блока питания с регулируемым током защиты. В предыдущей статье мы обсудили работу узла защиты. И, как упоминалось, у этой схемы есть один недостаток: после срабатывания защиты напряжение на выходе не падает до нуля. Сегодня поговорим о том, откуда берётся это остаточное напряжение и как с этим бороться.

Схема защиты блока питания

14 августа 2019 — Admin

Щит

Движемся дальше в изучении схемы блока питания с регулируемым током защиты, начало тут. В предыдущей статье мы закончили разбирать сам блок питания, теперь перейдём к схеме защиты. Из этой статьи вы узнаете: как «измерить» силу тока, как включить операционный усилитель с положительной обратной связью и как узел защиты управляет работой блока питания.

Мощный выходной транзистор в блоке питания

10 августа 2019 — Admin

составной транзистор КТ829Г

Продолжаем исследовать схему блока питания с регулируемым предельным током. Далее речь пойдёт о транзисторе Дарлингтона и защите эмиттерного перехода. А также разберём три ситуации, в которых эта защита может пригодиться.

Операционный усилитель в блоке питания

6 августа 2019 — Admin

Обозначение ОУ на схеме

Продолжаем разговор о блоке питания с регулируемым током защиты, в этой статье мы кратко разберём принципы работы операционного усилителя в блоке питания, а также реализацию отрицательной обратной связи.

Стабилитрон в блоке питания

5 августа 2019 — Admin

Вольт-амперная характеристика стабилитрона

Продолжаем разбирать схему лабораторного блока питания с регулируемым предельным током.

В этой статье речь пройдёт про трансформатор и диодный блок, принцип работы стабилитрона и схему его включения, можность резисторов, а также про делитель напряжения.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector