0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование напряжения трансформатора

Регулирование напряжения трансформатора

Регули́рование напряже́ния трансформа́тора — изменение числа витков обмотки трансформатора. Применяется для поддержания нормального уровня напряжения у потребителей электроэнергии.

Большинство силовых трансформаторов [1] оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков.

Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путём выбора положения болтового соединения при обесточенном и заземлённом трансформаторе.

Степень сложности системы с переключателем числа витков определяется той частотой, с которой надо переключать витки, а также размерами и ответственностью трансформатора.

Содержание

Применение [ править | править код ]

В зависимости от нагрузки электрической сети меняется её напряжение. Для нормальной работы электроприёмников потребителей необходимо, чтобы напряжение не отклонялось от заданного уровня больше допустимых пределов, в связи с чем применяются различные способы регулирования напряжения в сети. Одним из способов является изменение соотношения числа витков обмоток первичной и вторичной цепи трансформатора (коэффициента трансформации), так как
U 2 = U 1 w 2 w 1 =U_<1> over w_<1>>>

В зависимости от того, происходит это во время работы трансформатора или после его отключения от сети, различают «переключение без возбуждения» (ПБВ) и «регулирование под нагрузкой» (РПН). И в том и в другом случае обмотки трансформатора выполняются с ответвлениями, переключаясь между которыми, можно изменить коэффициент трансформации трансформатора.

Переключение без возбуждения [ править | править код ]

Данный тип переключения используется во время сезонных переключений, так как предполагает отключение трансформатора от сети, что невозможно делать регулярно, не лишая потребителей электроэнергии. ПБВ позволяет изменить коэффициент трансформации в пределах от −5 % до +5 %. На маломощных трансформаторах выполняется с помощью двух ответвлений, на трансформаторах средней и большой мощности с помощью четырёх ответвлений по 2,5 % на каждое [2] .

Ответвления чаще всего выполняются на той стороне, напряжение на которой в процессе эксплуатации подвергается изменениям. Обычно это сторона высшего напряжения. Выполнение ответвлений на стороне высшего напряжения имеет также то преимущество, что при этом, ввиду большего количества витков, отбор ±2,5 % и ±5 % количества витков может быть произведён с большей точностью. Кроме того, на стороне высшего напряжения величина силы тока меньше, и переключатель получается более компактным [3] . При этом надо заметить, что у понижающих трансформаторов (питание подводится со стороны обмотки высшего напряжения) регулирование напряжения будет сопровождаться изменением магнитного потока в магнитопроводе. В нормальном режиме это изменение незначительно.

Регулирование напряжения переключением числа витков обмотки со стороны питания и со стороны нагрузки имеет разнохарактерный вид: при регулировании напряжения изменением числа витков на стороне нагрузки для повышения напряжения необходимо увеличить число витков (поскольку напряжение пропорционально числу витков), но при регулировании со стороны питания для повышения напряжения на нагрузке необходимо уменьшить число витков (это связано с тем, что напряжение сети уравновешивается ЭДС первичной обмотки, и для уменьшения последней необходимо уменьшить число витков).

При переключении ответвлений обмотки с отключением трансформатора, переключающее устройство получается проще и дешевле, однако переключение связано с перерывом энергоснабжения потребителей и не может проводиться часто. Поэтому этот способ применяется главным образом для коррекции вторичного напряжения сетевых понижающих трансформаторов в зависимости от уровня первичного напряжения на данном участке сети в связи с сезонным изменением нагрузки [3] .

Переключатели числа витков без возбуждения [ править | править код ]

Переключатель числа витков без возбуждения имеет достаточно простое устройство, предоставляющее соединение с выбранным переключателем числа витков в обмотке. Как следует из самого названия, он предназначен для работы только при отключенном трансформаторе. Именно этот тип переключателя имеет второе, жаргонное название — «анцапфа» (нем. Anzapfen — отводить, отбирать) [4] .

Для уменьшения и стабильности переходного сопротивления контактов на них поддерживается давление с помощью специального пружинного приспособления, которое при определённых ситуациях может вызывать вибрацию. Если переключатель числа витков без возбуждения находится в одном и том же положении в течение нескольких лет, то сопротивление контакта может медленно расти в связи с окислением материала в точке контакта (поскольку в качестве материала контакта чаще применяется медь или сплавы на её основе (латунь), окислы которых имеют достаточно высокое электрическое сопротивление и химическую стойкость) и постепенным разогревом контакта, который приводит к разложению масла и осаждению пиролитического углерода на контактах, что ещё более увеличивает контактное сопротивление и снижает степень охлаждения, приводя к местным перегревам. Данный процесс может происходить лавинообразно. В конечном итоге наступает неконтролируемая ситуация, приводящая к срабатыванию газовой защиты (из-за газов, появляющихся при разложения масла в точках местных перегревов) или даже к поверхностному пробою по осевшим на изоляции твёрдым продуктам разложения масла. Персонал предприятия,обслуживающий трансформаторы, оборудованные переключателем коэффициентом трансформации ПБВ (переключатель без возбуждения), должен не менее чем 2 раза в год перед наступлением зимнего максимума нагрузки и летнего минимума нагрузки произвести проверку правильности установки коэффициента трансформации [5] . При этом необходимо, чтобы переключение числа витков проводилась в отключенном от сети состоянии, с переводом переключателя во все положения — данный цикл должен быть повторен несколько раз для удаления окисных плёнок с поверхности контактов и возвратом его обратно в заданное положение [6] . Для контроля качества контактов производится измерение сопротивления обмоток постоянному току. «Трансформаторы силовые транспортирование, разгрузка, хранение, монтаж и ввод в эксплуатацию СПО и И Союзтехэнерго, Москва» 1981г. Вышеуказанные операции проводятся также если трансформатор был отключён в течение большого промежутка времени и вновь вводится в эксплуатацию.

Читайте так же:
Беспроводной звонок в квартиру с регулировкой громкости

Регулирование под нагрузкой [ править | править код ]

Данный тип переключений применяется для оперативных переключений, связанных с постоянным изменением нагрузки (например, днём и ночью нагрузка на сеть будет разная). В зависимости от того, на какое напряжение и какой мощности трансформатор, РПН может менять значение коэффициента трансформации в пределах от ±10 до ±16 % (примерно по 1,5 % на ответвление). Регулирование осуществляется на стороне высокого напряжения, так как величина силы тока там меньше, и соответственно, устройство РПН выполнить проще и дешевле. Регулирование может производиться как автоматически, так и вручную из ОПУ или диспетчерского пульта управления. Уже в 1905—1920 годах были разработаны устройства для регулирования напряжения на трансформаторах под нагрузкой (РПН). Принцип регулирования напряжения таких устройств также основан на изменении числа витков. Сложность выполнения таких устройств заключается:

  • в невозможности простого разрыва цепи при изменении числа витков, как это делается в ПБВ (это связано с возникновением электрической дуги большой мощности и больших перенапряжений из-за действия ЭДС индукции) что приведёт к выходу из строя трансформатора;
  • использовании кратковременных (на время переключения ступени напряжения) замыканий части витков обмоток.

Для ограничения тока в короткозамкнутых обмотках необходимо использовать токоограничивающие сопротивления. В качестве токоограничивающего сопротивления используются индуктивности (реакторы) и резисторы.

РПН с токоограничивающими реакторами [ править | править код ]

Каждая ступень РПН с токоограничивающим реактором состоит из двух контакторов и одного реактора. При этом реактор состоит из двух обмоток, к каждой из них подключены контакторы. В нормальном режиме оба контактора замыкают один и тот же контакт и через эти оба параллельно включённых контактора и реактор проходит ток обмотки. Во время операции переключения один из контакторов переключается на другой контакт (соответствующий необходимой ступени регулирования). При этом часть обмотки трансформатора замыкается накоротко — ток в этой цепи ограничивается реактором. Далее на этот же контакт переводится другой контактор, переводя трансформатор на другую ступень регулирования — на этом операция регулирования заканчивается.

РПН с токоограничивающими резисторами [ править | править код ]

Довольно важное улучшение в работе переключателей числа витков под нагрузкой произошло в результате изобретения быстродействующего триггерного контактора, названного принципом Янсена (Janssen) по имени изобретателя. Принцип Янсена подразумевает, что контакты переключателя нагружены пружиной, и они перебрасываются из одного положения в другое после очень короткого периода соединения между двумя переключателями числа витков, через токоограничивающий резистор.

Применение реактора является альтернативой принципу Янсена с последовательностью быстрых переключений и резисторами. В переключателе числа витков реакторного типа, напротив, намного труднее прервать циркулирующий реактивный ток, и это довольно сильно ограничивает скачок напряжения, однако этот принцип хорошо работает при относительно высоких токах. В этом отличие от быстродействующего резисторного переключателя числа витков, который применим для более высоких напряжений, но не для высоких токов. Это приводит к тому, что реакторный переключатель числа витков обычно находится в низковольтной части трансформатора, тогда как резисторный переключатель витков подсоединен к высоковольтной части.

В переключателе витков реакторного типа потери в средней точке реактора благодаря току нагрузки и наложенного конвекционного тока между двумя вовлеченными переключателями числа витков невелики, и реактор может постоянно находиться в электрической цепи между ними. Это служит промежуточной ступенью между двумя переключателями числа витков, и это даёт в два раза больше рабочих положений, чем число переключателей числа витков в обмотке.

С 1970-х годов стали применяться переключатели числа витков с вакуумными выключателями. Вакуумные выключатели характеризуются низкой эрозией контактов, что позволяет переключателям числа витков выполнять большее количество операций между обязательными профилактическими работами. Однако конструкция в целом становится более сложной.

Также на рынке появлялись экспериментальные переключатели числа витков, в которых функция переключения исполняется силовыми полупроводниковыми элементами. Эти модели также направлены на то, чтобы сократить простои на проведение технического обслуживания.

Читайте так же:
Регулировка пластиковых окон в истре

В переключателях витков резисторного типа контактор находится внутри контейнера с маслом, которое отделено от масла трансформатора. Со временем масло в этом контейнере становится очень грязным и должно быть изолировано от масляной системы самого трансформатора; оно должно иметь отдельный расширительный бак со своим отдельным вентиляционным клапаном.

Устройство переключения числа витков представляет собой клетку или изолирующий цилиндр с рядом контактов, с которыми соединяются переключатели числа витков от регулирующей обмотки. Внутри клетки два контактных рычага передвигаются пошагово поперёк регулирующей обмотки. Оба рычага электрически соединены с вводными клеммами контактора. Один рычаг находится в положении активного переключателя числа витков и проводит ток нагрузки, а другой рычаг находится без нагрузки и свободно передвигается к следующему переключателю числа витков. Контакты устройства переключения никогда не разрывают электрический ток и могут находиться в масле самого трансформатора.

Автоматическое регулирование напряжения [ править | править код ]

Переключатель числа витков устанавливается для того, чтобы обеспечивать изменение напряжения в линиях, соединённых с трансформатором. Совсем необязательно, что целью всегда будет поддержание постоянного вторичного напряжения на трансформаторе. Чаще всего падения напряжения происходят во внешней сети — особенно это проявляется для дальних и мощных нагрузок. Для поддержания номинального напряжения на дальних потребителях может потребоваться увеличение напряжения на вторичной обмотке трансформатора. Система управления РПН относится к релейной защите и автоматике станции — переключатель числа витков всего лишь получает команды: повысить или понизить. Однако обычно функции согласования коэффициентов трансформации между различными трансформаторами внутри одной и той же станции относятся к системе РПН. При соединении трансформаторов в параллель их переключатели числа витков должны двигаться синхронно. Для этого один из трансформаторов выбирается ведущим, а другие — как ведомыми, их системы управления РПН следят за изменением коэффициента трансформатора ведущего трансформатора. Обычно синхронным переключением числа витков добиваются исключения токов циркуляции между обмотками параллельных трансформаторов (из-за разницы вторичных напряжений параллельных трансформаторов) хотя на практике в момент действия РПН циркуляционные токи всё же возникают из-за рассогласования при переключении, однако это допускается в определённых пределах.

Последовательные регулировочные трансформаторы (Вольтодобавочные трансформаторы) [ править | править код ]

Для регулирования коэффициента трансформации мощных трансформаторов и автотрансформаторов иногда применяют регулировочные трансформаторы (вольтодобавочные), которые подключаются последовательно с трансформатором и позволяют менять как напряжение, так и фазу напряжения. В силу сложности и более высокой стоимости регулировочных трансформаторов, такой способ регулирования применяется гораздо реже.

Советы электрика

Регулирование напряжения у силовых трансформаторов

Приветствую вас, читатель моего сайта ceshka.ru!

В этой статье я хочу рассказать вам как регулируется напряжение у силового трансформатора 110/10 кВ- под нагрузкой.

Для тех кто вообще не в теме объясняю о чем вообще идет речь.

Электроэнегрия от электростанции (АЭС, ТЭЦ, ГРЭС и т.п.) передается по опорам воздушных линий на многие сотни километров к подстанции (я буду вести речь о подстанции 110 000 Вольт), где установлены понижающие трансформаторы – очень большие и очень мощные.

Эти трансформаторы понижают напряжение (в моем примере до 10 000 Вольт) и передают электроэнергию дальше, но уже на более короткое расстояние- в пределах 10-40км до следующего понижающего трансформатора, который преобразует уже высокое напряжение 10 кВ в низкое трехфазное напряжение 400 Вольт, которое и идет по проводам к нам в дома.

Так вот, к трансформатору 110/10 кВ, установленному на подстанции, присоединяется очень много нагрузки- это может быть целый сельский район или часть большого города.

Нагрузка в течении дня и в течении времен года постоянно меняется и очень сильно.

Например в зимний период многие сельские жители обогреваются электрокотлами , поэтому потребляемый ток гораздо больше чем летом.

Или есть утренние и вечерние часы максимума нагрузок когда люди просыпаются или наоборот приходят с работы, включают электроприборы- потребление электроэнергии сильно возрастает. В течении дня нагрузка снижается и иногда даже в разы меньше чем утром или вечером.

Что происходит с понижающим трансформатором при увеличении нагрузки

А ничего с ним не происходит))) Как понижал он напряжение- так и продолжает понижать- так уж он устроен.

На первичную обмотку (обмотка высокого напряжения) подается 110 000 Вольт, а со вторичной (обмотка низкого напряжения) снимается 10 000 Вольт.

Это идеальный вариант, когда напряжение на первичной обмотке стабильное и не меняется, а нагрузка вторичной обмотки или очень мала или ее совсем нет (трансформатор работает в режиме холостого хода).

На самом деле это совсем не так.

В действительности высокое напряжение на первичной нагрузке постоянно меняется в небольших пределах- 110-117кВ

А так как коэффициент трансформации у трансформатора величина неизменная, то получается что и на вторичной обмотке 10 кВ напряжение тоже колеблется так сказать “в ногу” с первичным напряжением.

Читайте так же:
Не работает регулировка звука на пульте ростелеком

А вслед за этим колебания напряжения передаются следующим понижающим трансформаторам 10/0,4 кВ…

И так эти колебания дойдут и до наших квартир и напряжение колебалось бы пропорционально с высоким напряжением 110 кВ.

И было бы у нас в розетках то 180 Вольт, то 250 и бесперестанно бы оно изменялось в течении суток. Думаю что никому не понравится когда свет в доме постоянно меняет яркость, как в том анекдоте- то потухнет, то погаснет, то совсем не загорит)))

Почему изменяется напряжение

А изменяется напряжение от нагрузки, от того, какая мощность подключена к трансформатору.

Кто дружит с физикой тот знает- чем больше мощность, тем больше ток. В свою очередь увеличение значения электрического тока приводит к тому, что увеличивается падение напряжения в проводниках электрического тока.

Это обмотки трансформатора, провода воздушной линии электропередачи, силовые кабеля и т.п.- на них происходит основное падение напряжения.

Что это такое падение напряжения

Говоря упрощенно и что бы было понятнее- это энегрия(причем активная!) выделяемая в виде тепла.

Приведу пример. Для каждого сечения провода есть максимальный допустимый ток. Если к медному проводу сечением 2,5 кв. мм подключить одн офазный электротел мощностью 9 кВт с потребляемым током 9000_220=41 ампер, то провод очень сильно будет греться.

Материал, из которого изготовлен провод- медь оказывает активное сопротивление электрическому току.

По закону Ома- электрический ток прямо пропорционален изменениям напряжения, поэтому при подключении электрокотла на этом участке провода увеличивается и напряжение и происходит нагрев провода.

Не понятно? Давайте еще подробнее. Допустим сопротивление провода0 1 Ом. Ток как уже определили- 41 ампер.

Тогда на проводе напряжение составит U=R*I= 41 Вольт

Это и есть падение напряжения на проводе. При этом будет выделяться мощность в виде тепла P=U*I=41*41=1681 Ватт

А это целый электрообогреватель мощностью 1,7 кВт.

Конечно такая рассеиваемая мощность в проводе приводит к перегреву и плавлению изоляции. Именно поэтому для каждого сечения ток ограничен.

В данном случае для 2,5 кв.мм допустимый ток 25-27 ампер.

Из всего вышесказанного следует:

При увеличении нагрузки- увеличивается ток и увеличивается падение напряжения и потери энергии в проводах

Другими словами- часть напряжения и энергии до наших розеток просто не доходит, а выделяется в воздух в виде тепла…

А сейчас самое важное!

Что бы компенсировать такие неизбежные потери энергии, на вторичной обмотке силового трансформатора повышают напряжение.

То есть повышают напряжение выше 10 000 Вольт- до 11, а то и больше киловольт. Тогда даже и если часть энергии “теряется” в проводах, у нас в квартирах и домах напряжение находится в пределах нормы- около 220 Вольт.

Как регулируется напряжение

Как можно изменять вторичное напряжение на понижающем трансформаторе? Можно изменять напряжение, подводимое к первичной обмотке- тогда на вторичной оно будет изменяться прямо пропорционально.

Но этот вариант не подходит, так как у трансформаторов, подключенных к сети 110 кВ разная загруженность- у одних может быть 100% нагруженность, у других- 20-50% и т.д.

И при этом способе напряжение на выходе будет меняться одновременно на всех- и там где надо и там где не надо…

А трансформаторов подключено не просто много- а очень много!

Поэтому применяют другой способ.

Напряжение регулируется изменением коэффициента трансформации самого трансформатора

Изменяется количество витков первичной обмотки трансформатора.

А почему именно в первичной?

В принципе можно было бы изменять и на вторичной обмотке- коэффициенту без разницы, он все равно будет изменяться, так как будет меняться соотношение витков первичной к вторичной обмотками.

Однако изменяют именно на высокой стороне- где выше напряжение. Почему?

Все очень просто. Где выше напряжение- там меньше величина электрического тока.

А так как регулировка напряжения происходит под нагрузкой- то есть трансформатор не отключают, то при изменении витков обмотки- при коммутации- появляется электрическая дуга в месте переключения контактов.

А чем больше ток— тем больше дуга, а эту дугу надо обязательно гасить…

Кстати значения тока между первичной и вторичной обмотками различается очень значительно. Например на вторичной нагрузке ток в 300 ампер вполне допустим, а для первичной максимальный ток является 25-30 ампер.

Думаю не надо объяснять что переключать контакты при токе в 300 ампер гораздо сложнее чем при 30, согласитесь)))

А где находятся эти контакты? В баке трансформатора сделаны отводы от первичной обмотки для изменения коэффициента трансформации и выведены в отдельный отсек, где и происходит переключение с помощью специального механизма.

Читайте так же:
Схема простейшего зарядного устройства с регулировкой напряжения

Снаружи на баке трансформатора прикреплен привод этого механизма, называется он

Привод РПН

РПН расшифровывается как Регулирование Под Нагрузкой. В приводе расположен электродвигатель и элементы автоматики РПН- пускатели, конечные выключатели, автоматический выключатель, клемник с контрольными кабелями и т.д.

Электродвигатель с помощью вала вращает механизм переключения. Вся работа привода РПН контролируется автоматикой РПН.

Именно благодаря применению автоматики не требуется ручное управление- она сама следит за изменениями напряжения и при необходимости меняет коэффициент трансформации, поэтому при любой нагрузке трансформатора на выходе вторичной обмотки- необходимое напряжение.

А у нас в доме- в розетке- 220)))

Автоматикой РПН управляют специальные электронные блоки:

В них выставляются необходимые параметры работы- напряжение, выдержка времени, порог нечувствительности и т.д. В релейной защите это называется уставки.

И электронный блок уже сам определяет когда изменить напряжение, через какое время и в каких пределах, все это делается автоматически.

Так же возможно и ручное переключение РПН- непосредственно из привода около трансформатора или дистанционно- с панели управления из диспетчерского пункта.

Для этого есть специальные переключатели и ключи управления. Оперативный персонал подстанции может отключить автоматику и вручную регулировать напряжение на выходе трансформатора.

Это требуется например когда автоматика РПН выведена в ремонт или при проведении оперативных переключений, но это уже как говорится- совсем другая история)))

Специально по этой теме я снял видео непосредственно с подстанции 110/10 кВ и предлагаю вам “вживую” посмотреть как регулируется напряжение на трансформаторе под нагрузкой!

Регулирование напряжения трансформаторов

Для нормальной работы потребителей необходимо поддерживать определенный уровень напряжения на шинах подстанций. В электрических сетях предусматриваются способы регулирования напряжения, одним из которых является изменение коэффициента трансформации трансформаторов.

Известно, что коэффициент трансформации определяется как отношение первичного напряжения ко вторичному, или

где w1 w2 — число витков первичной и вторичной обмоток соответственно.

Обмотки трансформаторов снабжаются дополнительными ответвлениями, с помощью которых можно изменять коэффициент трансформации. Переключение ответвлений может происходить без возбуждения (ПБВ), т.е. после отключения всех обмоток от сети или под нагрузкой (РПН).

Схема регулирования напряжения ПБВ

Рис.1. Схема регулирования напряжения ПБВ:
а — ответвления вблизи нулевой точки обмотки ±5% с трехфазным переключателем на три положения,
б — ответвления в середине обмотки ±2×2,5% с однофазными переключателями на пять положений (фаза А);
1 — неподвижный контакт, 2 — сегмент контактный;
3 — вал переключателя, 4 — контактные кольца

Устройство ПБВ позволяет регулировать напряжение в пределах ±5%, для чего трансформаторы небольшой мощности кроме основного вывода имеют два ответвления от обмотки высшего напряжения: +5% и -5% (рис.1,а). Если трансформатор работал на основном выводе 0 и необходимо повысить напряжение на вторичной стороне U2, то, отключив трансформатор, производят переключение на ответвление -5%, уменьшая тем самым число витков w1.

На трансформаторах средних и больших мощностей предусматриваются четыре ответвления ±2х2,5%, переключение которых производится специальными переключателями барабанного типа, установленными отдельно для каждой фазы (рис.1,б). Рукоятка привода переключателя выведена на крышку трансформатора.

При замыкании роликом переключателя контактов A4-A5 трансформатор имеет номинальный коэффициент трансформации. Положения А34 и А23 соответствуют увеличению коэффициента трансформации на 2,5 и 5%, а положения А56 и А67 — уменьшению на 2,5 и 5%.

Устройство ПБВ не позволяет регулировать напряжение в течение суток, так как это потребовало бы частого отключения трансформатора для производства переключений, что по условиям эксплуатации практически недопустимо. Обычно ПБВ используется только для сезонного регулирования напряжения.

Регулирование под нагрузкой (РПН) позволяет переключать ответвления обмотки трансформатора без разрыва цепи. Устройство РПН предусматривает регулирование напряжения в различных пределах в зависимости от мощности и напряжения трансформатора (от ±10 до ±16% ступенями приблизительно по 1,5%).

Устройство РПН трансформаторов

Рис.2. Устройство РПН трансформаторов
а — схема включения регулировочных ступеней,
Аb — основная обмотка, bс — ступень грубой регулировки,
de — ступени плавной регулировки, П — переключатель, И — избиратель,
б — переключающее устройство РНТ-13,
1 — переключатель, 2 — горизонтальный вал, 3 — кожух контакторов,
4 — вертикальный вал, 5 — коробка привода, 6 — бак трансформатора

Регулировочные ступени выполняются на стороне ВН, так как меньший по значению ток позволяет облегчить переключающее устройство. Для расширения диапазона регулирования без увеличения числа ответвлений применяют ступени грубой и тонкой регулировки (рис.2). Наибольший коэффициент трансформации получается, если переключатель П находится в положении II, а избиратель И — на ответвлении 6. Наименьший коэффициент трансформации будет при положении переключателя I, а избирателя — на ответвлении 1.

На рис.2,б показана схема расположения элементов переключающего устройства РНТ-13, применяемого на трансформаторах средней мощности.

Схема и последовательность переключений устройства РПН с токоограничивающими сопротивлениями

Рис.3. Схема и последовательность переключений устройства РПН
с токоограничивающими сопротивлениями

Читайте так же:
Регулировка яркости дисплея 1602 i2c в скетче

Переход с одного ответвления регулировочной обмотки на другое осуществляется так, чтобы не разрывать ток нагрузки и не замыкать накоротко витки этой обмотки. Это достигается в специальных переключающих устройствах с реакторами или резисторами. Схема с резисторами (рис.3) обладает рядом преимуществ перед схемой с реакторами и получает все более широкое применение. На рис.3 показаны регулировочная часть обмотки de и переключающее устройство.

Последовательность работы контакторов и избирателей показана в таблице к рис.3. В исходном положении 0 трансформатор работает на ответвлении 5, ток нагрузки проходит через контакт К1. Допустим, что необходимо уменьшить число витков в регулировочной обмотке, т.е. перейти на ответвление 4. Последовательность работы элементов РПН в этом случае будет следующей: обесточенный избиратель И2 переводится в положение 4, затем отключается К1 и ток нагрузки кратковременно проходит по R1 и К2; при третьей операции замыкается КЗ, при этом половина тока нагрузки проходит по R1 и К2, а половина — по R2 и КЗ, кроме того, витки регулировочной обмотки 5 — 4 оказываются замкнутыми через R1 и R2 и по ним проходит ограниченный по значению циркулирующий ток; при следующих операциях (4 и 5) размыкается К2 и замыкается К4, при этом ток нагрузки проходит по регулировочной обмотке на ответвление 4, избиратель И2, контакты К4 к выводу 0.

В переключателях данного типа используются мощные пружины, обеспечивающие быстрое переключение контактов контактора (

Большая Энциклопедия Нефти и Газа

Встречное регулирование напряжения осуществляется по графику нагрузки ЦП, который формируется всеми потребителями. Поэтому при разнородных графиках нагрузки РТ закон регулирования в большей или меньшей степени не соответствует ни одному потребителю. Степень несоответствия для конкретного потребителя будет тем больше, чем меньше доля потребителей с подобным графиком в общей нагрузке и чем более отличен их график от графика основной массы потребителей.  [1]

Встречное регулирование напряжения на подстанциях практически можно осуществить только установкой на них трансформаторов с регулированием напряжения под нагрузкой.  [3]

Встречное регулирование напряжения в точках питания сетей 6 — 10 кв должно быть обязательным при допущении потерь напряжения в вышеуказанных размерах и должно осуществляться при питании таких сетей от электростанций на шинах их, а при питании их от районных сетей на шинах вторичного напряжения, преимущественно за счет применения трансформаторов с изменением коэффициентов трансформации под нагрузкой.  [4]

Встречное регулирование напряжения на городской подстанции производится по определенному графику с целью поддержания постоянного напряжения в некоторой точке сети.  [6]

Обычно встречное регулирование напряжения осуществляется не только генераторами на электростанциях, но и на шинах подстанций трансформаторами, имеющими устройства для переключения ответвлений под нагрузкой.  [7]

Поэтому встречное регулирование напряжения имеет ограниченное применение и возможно при наличии в сети других средств для регулирования напряжения.  [8]

Поскольку встречное регулирование напряжения на шинах ЦП производится в соответствии j суммарным графиком нагрузки или графиком нагрузки одной из наиболее характерных отходящих линий, то при этом на отдельных линиях с резко различающимися графиками нагрузок будут неудовлетворительные уровни напряжения и могут потребоваться вольтодобавочные трансформаторы или другие дополнительные средства регулирования.  [10]

Обеспечить встречное регулирование напряжения на шинах вторичного напряжения подстанций, используя только обычные ( Ответвления на трансформаторах, невозможно.  [11]

При автоматическом встречном регулировании напряжения ( токовой компенсации) на вход блока автоматического регулирования подается, кроме регулируемого напряжения, еще напряжение, пропорциональное току нагрузки. Напряжение поддерживается неизменным не на выходе трансформатора, а в некоторой точке сети, удаленной хот трансформатора. Таким образом удается скомпенсировать падение напряжения or тока нагрузки.  [12]

Если же встречное регулирование напряжения не обеспечено, тогда необходимо произвести поверочные расчеты отклонений напряжения у потребителей.  [13]

Поясним сущность встречного регулирования напряжения на примере. Предположим, что в утренние часы, когда предприятия еще не работают на полную мощность, напряжение на шинах питающего центра держится на уровне номинального. С ростом нагрузки и приближением ее к утреннему максимуму из-за возрастающих потерь напряжения напряжение в питающем центре также снижается. Ночью значительное число предприятий прекращает работу, нагрузки сети и потери напряжения снижаются. За счет этого напряжение на шинах подстанций начинает возрастать. Согласно § 1 — 2 — 44 ПУЭ при снижении суммарной нагрузки до 30 % и ниже максимального ее значения напряжение на шинах подстанций должно быть снижено до номинального. Такие операции по централизованному изменению напряжения не всегда могут быть обеспечены без помощи самих потребителей. Местные средства регулирования напряжения, находящиеся в распоряжении предприятия, должны дополнить централизованное регулирование напряжения.  [14]

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector