0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Импульсный лабораторный блок питания на TL494

Импульсный лабораторный блок питания на TL494

Каждому радиолюбителю, ремонтнику или просто мастеру необходим источник питания, чтобы питать свои схемы, тестировать их при помощи блока питания, либо же просто иногда необходимо зарядить аккумулятор. Случилось так, что и я увлекся этой темой некоторое время назад и мне так же стал необходим подобный девайс. Как обычно, по этому вопросу было перелопачено много страниц в интернете, следил за многими темами на форумах, но точно того, что было нужно мне в моем представлении не было нигде — тогда было решено все сделать самому, собрав всю необходимую информацию по частям. Таким образом родился на свет импульсный лабораторный блок питания на микросхеме TL494.

Что особенного – да вроде мало чего, но я поясню – переделывать родной блок питания компьютера все на той же печатной плате мне кажется не совсем по фен-шую, да и не красиво. С корпусом та же история – дырявая железяка просто не смотрится, хотя если есть фанаты такого стиля, ничего против не имею. Поэтому в основе данной конструкции лежат лишь основные детали от родного компьютерного блока питания, а вот печатная плата (точнее печатные платы – их на самом деле три) сделана уже отдельно и специально под корпус. Корпус здесь состоит также из двух частей – само собой основа корпус Kradex Z4A, а так же вентилятор (кулер), который вы можете видеть на фото. Он является как бы продолжением корпуса, но обо всем по порядку.

Схема блока питания:

Список деталей вы можете увидеть в конце статьи. А теперь коротко разберем схему импульсного лабораторного блока питания. Схема работает на микросхеме TL494, существует много аналогов, однако рекомендую все же использовать оригинальные микросхемы, стоят они совсем недорого, а работают надежно в отличие от китайских аналогов и подделок. Можно также разобрать несколько старых блоков питания от компьютеров и насобирать необходимых деталей от туда, но я рекомендую по возможности использовать все же новые детали и микросхемы – это повысит шанс на успех, так сказать. По причине того, что выходная мощность встроенных ключевых элементов TL494 не достаточная, чтобы управлять мощными транзисторами, работающих на основной импульсный трансформатор Tr2, строится схема управления силовыми транзисторами T3 и T4 с применением управляющего трансформатора Tr1. Данный трансформатор управления использован от старого блока питания компьютера без внесения изменений в состав обмоток. Трансформатор управления Tr1 раскачивается транзисторами T1 и T2.

Сигналы управляющего трансформатора через диоды D8 и D9 поступают на базы силовых транзисторов. Транзисторы T3 и T4 используются биполярные марки MJE13009, можно использовать транзисторы на меньший ток – MJE13007, но здесь все же лучше оставить на больший ток, чтобы повысить надежность и мощность схемы, хотя от короткого замыкания в высоковольтных цепях схемы это не спасет. Далее эти транзисторы раскачивают трансформатор Tr2, который преобразует выпрямленное напряжение 310 вольт от диодного моста VDS1 в необходимое нам (в данном случае 30 – 31 вольт). Данные по перемотке (или намотке с нуля) трансформатора чуть позже. Выходное напряжение снимается с вторичных обмоток этого трансформатора, к которым подключается выпрямитель и ряд фильтров, чтобы напряжение было максимально без пульсаций. Выпрямитель необходимо использовать на диодах Шоттки, чтобы минимизировать потери при выпрямлении и исключить большой нагрев этого элемента, по схеме используется сдвоенный диод Шоттки D15. Здесь также чем больше допустимый ток диодов, тем лучше. При неосторожности при первых запусках схемы большая вероятность испортить эти диоды и силовые транзисторы T3 и T4. В выходных фильтрах схемы стоит использовать электролитические конденсаторы с низким ЭПС (Low ESR). Дроссели L5 и L6 были использованы от старых блоков питания компьютеров (хотя как старых – просто неисправных, но достаточно новых и мощных, кажется 550 Вт). L6 использован без изменения обмотки, представляет собой цилиндр с десятком или около того витков толстого медного провода. L5 необходимо перемотать, так как в компьютере используется несколько уровней напряжения – нам нужно только одно напряжение, которое мы будем регулировать.

L5 представляет собой кольцо желтого цвета (не всякое кольцо пойдет, так как могут применяться ферриты с разными характеристиками, нам нужно именно желтого цвета). На это кольцо нужно намотать примерно 50 витков медного провода диаметром 1,5 мм. Резистор R34 гасящий – он разряжает конденсаторы, чтобы при регулировке не возникло ситуации долгого ожидания уменьшения напряжения при повороте ручки регулировки.

Читайте так же:
Масляный насос ямз 240 устройство и описание регулировка

Наиболее подверженные нагреву элементы T3 и T4, а также D15 устанавливаются на радиаторы. В данной конструкции они были также взяты от старых блоков и отформатированы (отрезаны и изогнуты под размеры корпуса и печатной платы).

Схема является импульсной и может вносить в бытовую сеть собственные помехи, поэтому необходимо использовать синфазный дроссель L2. Чтобы отфильтровывать уже имеющиеся помехи сети используются фильтры с применением дросселей L3 и L4. Терморезистор NTC1 исключит скачок тока в момент включения схемы в розетку, старт схемы получится более мягкий.

Чтобы управлять напряжением и током, а также для работы микросхемы TL494 необходимо напряжение более низкого уровня, чем 310 вольт, поэтому используется отдельная схема питания для этого. Построена она на малогабаритном трансформаторе Tr3 BV EI 382 1189. С вторичной обмотки напряжение выпрямляется и сглаживается конденсатором – просто и сердито. Таким образом, получаем 12 вольт, необходимые для управляющей части схемы блока питания. Далее 12 вольт стабилизируются до 5 вольт при помощи микросхемы линейного стабилизатора 7805 – это напряжение используется для схемы индикации напряжения и тока. Также искусственно создается напряжение -5 вольт для питания операционного усилителя схемы индикации напряжения и тока. В принципе можно использовать любую доступную схему вольтметра и амперметра для данного блока питания и при отсутствии необходимости данный каскад стабилизации напряжения можно исключить. Как правило, используются схемы измерения и индикации, построенные на микроконтроллерах, которым необходимо питания порядка 3,3 – 5 вольта. Подключение амперметра и вольтметра указано на схеме.

На фото печатная плата с микроконтроллером — амперметр и вольтметр, к панели прикреплены на болтики, которые ввинчиваются в гайки, надежно приклеенные к пластмассе супер клеем. Данный индикатор имеет ограничение по измерению тока до 9,99 А, что явно маловато для данного блока питания. Кроме как функций индикации модуль измерения тока и напряжения больше никак не задействован относительно основной платы устройства. Функционально подойдет любой измерительный модуль на замену.

Схема регулировки напряжения и тока построена на четырех операционных усилителях (используется LM324 – четыре операционных усилителя в одном корпусе). Для питания этой микросхемы стоит использовать фильтр по питания на элементах L1 и C1, C2. Настройка схемы заключается в подборе элементов, помеченных звездочкой для задания диапазонов регулирования. Схема регулировки собрана на отдельной печатной плате. Кроме того, для более плавной регулировки по току можно использовать несколько переменных резисторов соединенных соответствующим образом.

Для задания частоты преобразователя необходимо подобрать номинал конденсатора C3 и номинал резистора R3. На схеме указана небольшая табличка с расчетными данными. Слишком большая частота может увеличить потери на силовых транзисторах при переключении, поэтому слишком увлекаться не стоит, оптимально, на мой взгляд, использовать частоту 70-80 кГц, а то и меньше.

Теперь о параметрах намотки или перемотки трансформатора Tr2. Основу я также использовал от старых блоков питания компьютера. Если большой ток и большое напряжения вам не нужны, то можно такой трансформатор не перематывать, а использовать готовый, соединив обмотки соответствующим образом. Однако если необходим больший ток и напряжение, то трансформатор необходимо перемотать, чтобы получить более лучший результат. Прежде всего придется разобрать сердечник, который у нас имеется. Это самый ответственный момент, так как ферриты достаточно хрупкие, а ломать их не стоит, иначе все на мусор. Итак, чтобы разобрать сердечник, его необходимо нагреть, так как для склеивания половинок обычно изготовитель использует эпоксидную смолу, которая при нагреве размягчается. Открытые источники огня использовать не стоит. Хорошо подойдет электронагревательное оборудование, в бытовых условиях – это, например электроплита. При нагреве аккуратно разъединяем половинки сердечника. После остывания снимаем все родные обмотки. Теперь нужно рассчитать необходимое количество витков первичной и вторичной обмоток трансформатора. Для этого можно использовать программу ExcellentIT(5000), в которой задаем необходимые нам параметры преобразователя и получаем расчет количества витков относительно используемого сердечника. Далее после намотки сердечник трансформатор необходимо обратно склеить, желательно также использовать высокопрочный клей или эпоксидную смолу. При покупке нового сердечника потребность в склейке может отсутствовать, так как часто половинки сердечника могут стягиваться металлическими скобами и болтиками. Обмотки необходимо наматывать плотно, чтобы исключить акустический шум при работе устройства. По желанию обмотки можно заливать какими-нибудь парафинами.

Печатные платы проектировались для корпуса Z4A. Сам корпус подвергается небольшим доработкам, чтобы обеспечить циркуляцию воздуха для охлаждения. Для этого по бокам и сзади сверлится несколько отверстий, а сверху прорезаем отверстие для вентилятора. Вентилятор дует вниз, лишний воздух уходит через отверстия. Можно вентилятор расположить и наоборот, чтоы он высасывал воздух из корпуса. По факту охлаждение вентилятором редко когда понадобится, к тому же даже при больших нагрузках элементы схемы сильно не греются.

Читайте так же:
Регулировка металлопластиковых окон прижим

Также подготавливаются лицевые панели. Индикаторы напряжения и тока используются с применением семисегментных индикаторов, а в качестве светофильтра для этих индикаторов используется металлизированная антистатическая пленка, наподобие той, в которую упаковывают радиоэлементы с пометкой чувствительности к электростатике. Можно также использовать полупрозрачную пленку, которую клеят на оконные стекла, либо тонирующую пленку для автомобилей. Набор элементов на лицевой панели спереди и сзади можно компоновать по любому вкусу. В моем случае сзади разъем для подключения к розетке, отсек предохранителя и выключатель. Спереди – индикаторы тока и напряжения, светодиоды индикации стабилизации тока (красный) и стабилизации напряжения (зеленый), ручки переменных резисторов для регулировки тока и напряжения и быстрозажимной разъем, к которому подключено выходное напряжение.

При правильной сборке блок питания нуждается только в подстройке диапазонов регулирования.

Защита по току (стабилизация по току) работает следующим образом: при превышении установленного тока на микросхему TL494 подается сигнал о снижении напряжения – чем меньше напряжение, тем меньше ток. При этом на лицевой панели загорается красный светодиод, сигнализирующий о превышении установленного тока, либо о коротком замыкании. В нормальном режиме стабилизации напряжения горит зеленый светодиод.

Основные характеристики импульсного лабораторного блока питания зависят в основном от применяемой элементной базы, в данном варианте характеристики следующие:

  • Входное напряжение – 220 вольт переменного тока
  • Выходное напряжение – от 0 до 30 вольт постоянного тока
  • Выходной ток составляет более 15 А (фактически тестированное значение)
  • Режим стабилизации напряжения
  • Режим стабилизации тока (защита от короткого замыкания)
  • Индикация обоих режимов светодиодами
  • Малые габариты и вес при большой мощности
  • Регулировка ограничения тока и напряжения

Подводя итог, можно отметить, что лабораторный блок питания получился достаточно качественный и мощный. Это позволяет использовать данный вариант блока питания как для тестирования каких-то своих схем, так и вплоть до зарядки автомобильных аккумуляторов. Стоит отметить также то, что емкости на выходе стоят достаточно большие, поэтому коротких замыканий лучше не допускать, так как разряд конденсаторов с большой вероятностью может вывести схему из строя (ту, к которой подключаемся), однако без этой емкости выходное напряжение будет хуже – возрастут пульсации. Это особенность именно импульсного блока, в аналоговых блока питания выходная емкость не превышает 10 мкФ как правило в силу своей схемотехники. Таким образом, получаем универсальный лабораторный импульсный блок питания способный работать в широком диапазоне нагрузок практически от нуля до десятков ампер и вольт. Блок питания прекрасно зарекомендовал себя как при питании небольших схем при тестировании (но тут защита от КЗ поможет мало из-за большой выходной емкости) с потреблением в миллиамперы, так и в применении в ситуациях, кода необходима большая выходная мощность за время моего скудного опыта в области электроники.

Этот лабораторный блок питания я сделал около 4 лет назад, когда только начинал делать первые шаги в электронике. До настоящего времени ни одной поломку с учетом того, что работал часто далеко за пределами 10 ампер (зарядка автомобильных аккумуляторов). При описании за счет давнего срока изготовления мог что-то упустить, вопросы, замечания складывайте в комментариях.

По для расчета трансформатора: ExcellentIT

Прилагаю к статье печатные платы (вольтметр и амперметр сюда не входят — можно применять абсолютно любые).

Регулируемый импульсный блок питания на tl494 схема. Регулятор тока и напряжения на TL494

Чудеса Алтая. Люди так увлеклись заграничными курортами, что забыли о том, что наша страна гораздо больше всей Европы. Например, территория Горного Алтая, площадь которого 9, 2 тыс км2 , может разместить в себе десять Великобританий. А живут на его территории всего 200 тысяч человек. Вот и получается, что для тайн и загадок это самое лучшее место. И если вам хочется прикоснуться к древней истории и познакомится с настоящей тайной, то вам сюда. Долина мертвых. История и большое количество свободного пространства позволили сохраниться удивительным памятникам. Например, в Чемальском районе есть целая «долина мертвых». Берега реки Катунь и её притоков усеяны тысячами скифских курганов, из которых большинство ещё не раскопаны. Это потрясающее зрелище. Но современность вмешивается даже в казалось бы неприкосновенные места. В ближайшее время планируется возобновить строительство Катунской ГЭС. Водохранилище, которое в результате появится, грозит затопить значительное число курганов, поэтому сейчас российские и алтайские археологи стараются форсировать свою работу. Перенасыщенность могилами дает почву для многочисленных догадок, почему именно на Алтае их оказалось так много. По одной из них, эта земля был прародиной всего человечества. Более скромные ученые соглашаются с тем, что Алтай — прародина индоевропейской расы. Есть версия, что здесь был центр могущественной державы скифов, границы которой доходили до Дуная. Тут действительно находят множество артефактов знаменитого скифского «звериного стиля», датируемых XIII веком до н.э. – III веком н.э. Говорят, что священная земля Алтая магическим образом не отпускала своих сынов, и они, подвластные её чарам, привозили умерших (где бы ни настигла их смерть) именно сюда, на свою историческую родину. Чуди. Есть горные люди-призраки. Чуди. Они жили очень давно и пришли из Эмондской степи. Они были хозяевами Алтая. Их исчезновение как-то связано с белым цветом. Одна теория каким-то образом привязывает белую березу. Теория Рериха говорит, что исчезновение этого народа связано с появлением белых людей. Якобы, чуди отказались от повиновения. Тем не менее чуди исчезли и исчезли очень интересным образом — они само закапывались: Чуди рыли большие ямы, делали настил из земли, поддерживаемый деревянными стойками, заходили туда всем племенем и обрушивали «крышу» на себя. На месте этих само-захоронений со временем образуются конические ямы, в которые иногда проваливаются люди. Существует гипотеза, что таким образом Чуди пытались перейти в другой, параллельный мир. И им это удалось. Есть люди (альпинисты, скалолазы), которые утверждают, что видели некие существа, похожие на людей, которые выходили из скал и заходили туда обратно. Хотя, эти видения могли быть результатом горной болезни.

Читайте так же:
Схемы регулировки пониженного напряжения

Примечание — подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. — ШИМ регулятор на ИС TL494.

Импульсные стабилизаторы напряжения на ИС TL494.

Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (ГПН).

Частота напряжения пилообразной формы определяется RC цепочкой и обычно f гпн = const , но, в случае необходимости, изменяя параметры RC можно устанавливать (регулировать) необходимую частоту.

Известно, что частота переключения коммутирующего устройства – транзисторы VT 2, VT 3 в ИСН с ШИМ постоянна (она задается ГПН). Под влиянием дестабилизирующих факторов изменяется напряжение на внешнем резисторе R 9 и, соответственно, на выходе дифференциального усилителя U упт, что приводит к изменению длительности открытого состояния транзисторов VT 2, VT 3 регулятора, а напряжение на выходе импульсного стабилизатора остается неизменным.

3.7.3 ШИМ-контроллеры серии TL494

В настоящее время на рынке широко представлены микросхемы (отечественные и импортные), которые реализуют различный набор функций ШИМ-управления для конкретных задач. Хорошо себя зарекомендовали ШИМ-контроллеры серии TL494 (отечественный аналог КР1114ЕУ4). Их подробное описание приведено в . Данные микросхемы обеспечивают расширенные возможности при разработке ИВЭП и реализуют полный набор функций ШИМ-управления. Микросхема осуществляет формирование опор-ного напряжения, усиление сигнала ошибки, формирование пилообразного напряжения, ШИМ-модуляцию, формирование двухтактного выхода, защиту от сквозных токов и перегрузок, внешнюю синхронизацию, широкий диапазон регулировки, обеспечивает мягкий запуск и возможность внешнего включения.

основные параметры и характеристики микросхемы TL494:

· напряжение питания Uсс – 7…40 В;

· напряжение на коллекторах закрытых ключевых транзисторов не более 40 В;

· ток выходных ключевых транзисторов – 250 мА;

· опорное напряжение – 5 В ± 5%;

· общая мощность рассеивания в непрерывном режиме (корпусDIP-16.Т а

Схема блок питания на tl494 с регулировкой напряжения и тока

Представляем схему импульсного самодельного блока питания на микросхеме tl494 с возможностью регулировки выдаваемого напряжения и тока. Такой блок питания обычно называют лабораторным блоком питания потому что при помощи него можно запитать как низковольтные маломощные потребители так и зарядить аккумулятор. Такой блок питания может выдать 30 Вольт при силе тока до 10 А.

Составные части импульсного блок питания на tl494

Блок питания можно разделить на 3 части:

1. Внутренний блок питания

Это блоки питания необходим для запитки вентилятора охлаждения, шим контроллера и вольтамперметра. Сюда подойдет любой блок питания с небольшой мощностью. Лучше конечно не собирать свой а использовать готовые решения, к примеру можно взять AC-DC преобразователь.

Внутренний блок питания на 12 Вольт, для питатния схемы блоки питания

2 Блок управления.

Блок состоит из микросхемы TL494 и драйвера на 4-х транзисторах.

Схема включения TL494 получается очень простая, такая схема подключения довольно распространена у радиолюбителей. При помощи резистора R4 осуществляется регулировка напряжения от 0 до максимального значения, а при помощи R2 задается максимальное значение силы тока. Резисторы R11 и R12 можно использовать многооборотные.

Читайте так же:
Регулировка креплений шкафов купе

Блок управления можно собрать на отдельной плате.

Блок управления на микросхеме TL494

Печатная плата блока управления

Печатная плата блока управления на TL494

Печатная плата блока управления на TL494

3 Силовая часть

Большую часть деталей можно взять из старого блока питания компьютера, входной фильтр, выпрямитель, конденсаторы тоже берем из него.

Далее нам необходимо изготовить трансформатор управления силовыми ключами. Большинство радиолюбителей пугает тот факт что придется изготавливать трансформатор. Но в нашем случае все просто.

Для изготовления трансформатора понадобится колечко R16 x 10 x 4.5 и провод МГТФ 0.07 кв. мм. Провод берем 3 отрезка по 1 метру и делаем 30 витков в 3 провода на кольце.

Дроссель L1 также наматывается на ферритовое кольцо медным проводом длинной 1.5-2 метра и сечением 2 мм. Такая намотка позволят достичь приблизительно требуемой индуктивности.

Во множестве блоков питания есть второй дроссель на ферритовом стрежне, в качестве L2 можно взять его.

Силовой трансформатор тоже берется из блока питания от компьютера, но выходное напряжение будет 20 Вольт. Для того чтобы получить 30 Вольт, силовой трансформатор нужно перемотать. Для больших токов предпочтительнее брать ферритовые кольца.

Схема блок питания на tl494 с регулировкой напряжения и тока

Схема блок питания на tl494 с регулировкой напряжения и тока

Расчет для нашего блока питания 30 вольт 10 ампер. Трансформатор-донор из компьютерного блока питания оказался 39/20/12:

Импульсный блок питания с регулятором напряжения 1….32 V мощностью 200ватт.

Родиков Е.Ю
Представленный блок питания имеет возможность менять напряжение поворотом ручки резистора R9 от 1 до 32 вольт, он имеет защиту от перенагрузки и необходимую мощность для всех радиолюбительских экспериментов.
Нагрузочная способность на всех диапазонах не превышает 6 ампер.
Блок питания имеет стабилизацию напряжения и гальваническую развязку с сетью 220V.
Этот блок питания был изобретен мной и моим знакомым и опробован в действии.
Во время сборки и настройки блока питания (БП) необходим двух лучевой осциллограф.

Переменное напряжение поступает на узел предотвращения мгновенного всплеска огромного тока при зарядке конденсаторов С5 и С6, состоящего из резисторов R1, R2, R3 реле, РЭС22, транзистора, стабилитрона КС156А, конденсатора С1 и конденсатора емкостью 0.33мкф 250V, диодной сборки на КД105Б .
При включении конденсаторы С5 и С6 заряжаются чрез резистор R3, время задерживающая цепочка срабатывания реле предоставляет необходимое время для зарядки мощных конденсаторов С5 и С6, после того как конденсаторы зарядятся реле замыкает контакты и ток идет напрямую тем самым дает возможность нагружать источник питания на полную мощность.

Следующий узел это узил защиты от помех источника питания в сеть переменного тока и в окружающие пространство.
Корпус блока питания должен быть изготовлен из метала .
Он служит экраном защищающим от помех в окружающие пространство он должен заземляться.
На корпус подается помехообразное напряжение через конденсаторы С2 и С3 эти помехи также уходят в заземляющий провод.
Фильтр помех в сеть 220V выполнен на катушке L1 и конденсаторе С4.

Силовой выпрямитель, выполнен на мощной диодной сборке КВРС1006, она имеет небольшие размеры и выдерживает постоянный ток в 10А, а в импульсе до 50А.
На конденсаторах С5 и С6 и резисторах R3 R4 собран делитель напряжения на 2, тем самым понижая напряжение в районе 150 вольт, это напряжение подается на силовой трансформатор Т1 через конденсатор С7 имеющий маленькую емкость и тем самым развязывает мощные полевые транзисторы по постоянному току во время коммутации трансформатора на частоте 50 Кгц.
Конденсатор С7 предотвращает пробой транзисторов IRF740 в случае остановки задающего генератора импульсов.
Высокочастотные диоды шунтирующие трансформатор Т1 и транзисторы IRF740 защищают от высоковольтных выбросов трансформатора Т1 не дав пробить транзисторы высоким напряжением хотя сами транзисторы имеют защиту на такой случай но диоды работают быстрее и надежнее.
Выбор полевых транзисторов был потому, что они имеют более быстрые показатели нежели чем биполярные, это имеет большое значение потому, что транзисторы испытывают большую мгновенную мощность во время перехода из закрытого состояния в открытое.
Чем быстрее цикл открытия или закрытия транзисторов тем больше их нагрузочная способность.
Управление полевыми транзисторами полностью поручено микросхеме IR2113.
Полевые транзисторы обладают паразитной емкостью сток затвор и поэтому обладают затормаживающим действием во время управления, микросхема IR 2113 во время управления может развивать ток в импульсе до 2 ампер, тем самым обеспечивая быстрое насыщение силовых полевых транзисторов, а также выход из насыщения.
Резисторы включенные в затворы транзисторов по 10 ом, предотвращают через мерный большой ток.
Конденсатор С18 и диод КД247Д выполняют роль источника питания управляющего узла микросхемы IR2113 верхнего по схеме транзистора IRF740.
Амплитуда на затворах транзисторов не должна превышать 18..20V и не должна быть ниже 11вольт.
Импульсы управления микросхемой IR2113 поступают от широтноимпульсного модулятора TL494.
Эта микросхема за счет сужения и расширения прямоугольных импульсов изменяет мощность отдаваемую в силовой трансформатор и тем самым выполняет роль стабилизатора и регулятора напряжения.
Управляющие импульсы с выхода 9 и 10 TL494 поступает на вход управления верхним транзистором 10 IR2113 и нижним 12 IR2113 нагрузкой на выходы TL494 являются два резистора по 1 ком.
Задающий генератор на которой работает блок питания определяется емкостью конденсатора подключенного к входу 5 ТL494 и подстроечный резистор подключенный к входу 6 TL494.
Управляющие трансформатором транзисторы IRF740 во время своей работы должны между импульсами закрываться оба это связано с тем, что транзисторы не могут мгновенно закрыться и тем самым может появиться сквозной ток, когда верхний транзистор еще полностью не закрылся, а нижний уже начел открываться и поэтому может пойти прямой ток сразу через два транзистора и тем самым вывести их из строя.
Для этого на вход 4 TL494 подается напряжение задающий этот минимальный зазор между импульсами.
Конденсатор С14 и подстроечный резистор 15 ком создающий то самое смещение позволяют регулировать этот зазор, а конденсатор С14 плавно подымает напряжение при включении блока в сеть заряжаясь он уменьшает защитный зазор и увеличивает ширину управляющих импульсов трансформатором Т1.
Что и нужно проверить на осциллографе, защитный мертвый зазор не должен быть ниже ширины импульса на четверть ширины его самого.
Ширина импульсов с выходов TL494 регулируется в зависимости от напряжения в диапазоне от 0…3 вольт поданное на вход 3.
Это напряжение подается от стабилизатора напряжения микросхемы TL494 с выходов 14 и 13 оно равно 5 вольтам плюс минус 5 процентов.
Оптрон который выполняет гальваническую развязку регулирует это напряжение подаваемое на вход 3 TL494 в зависимости от напряжения выхода источника питания.
Резистор 680 ом включенный последовательно оптрону и конденсатор 100мкф предотвращает возбуждению блока питания, если это происходи то надо номиналы этих деталей увеличить.
Если происходит возбуждение то нагружать блок питания не в коем случае нельзя так как может произойти перегрузка силовых транзисторов IRF740 во время зарядки конденсаторов С8 С9 С10.
Во время возбуждения блок питания начиная подвизгивать и выходное напряжение начинает прыгать.
Выпрямитель вторичных обмоток состоит из двух диодов штоки они имеют быстродействие 100кгц и максимальный ток до 30 ампер в лучшем случае, называются КД2997А или их можно заменить КД213 с любой буквой.
Вначале сглаживание происходит на коденсаторах С8 и С9, С8 на высоких частотах С9 на низких 50гц, затем через дроссель и еще один конденсатор С10.
Защита от замыкания собрана на транзисторе нескольких резисторах и RS триггере, она имеет большое быстродействие регулировку тока срабатывания настраивают подстроечным резистором R8.
Усиленный по напряжению сигнал с транзистора VT1 поступает на триггер, который при появлении напряжения ниже 2волт на входе 4 включает через транзистор оптрон PS2501 который соединяет 16 вход TL494 с +5 V, что приводит к прекращению подачи управляющих импульсов.
С оптрона на 16 входе микросхемы напряжение через резистор 10 ком идет на диод и конденсатор заряжаясь до напряжения насыщения диода 0,5 вольта диод в таком случае необходим кремневый например КД103А, при нажатии на кнопку управления триггером оптрон выключается и блок питания выходит из состояния перенагрузки.
На входе 16 TL494 напряжение плавно понижается разрежаясь на резистор 2 ком и 10 ком и тем самым ширина импульсов начинает возрастать до предела установленного переменным резистором R9.

Читайте так же:
В айтюнс не могу синхронизировать рингтон

Детали нужно должны быть те же, что и на схеме трансформатор Т1 выполнен из фирита Ш образного, МН2000 с рабочим сечением 12Х14 высотой окна 31мм и шириной 9мм, первичная обмотка имеет 32 витка из отдельных жил 0,3 мм ПЭВ-2, вторичная 8 витков из отдельных жил по 0,8 мм ПЭВ-2, для первички общим сечением всех жил 1мм, вторички 2мм, вторичку можно намотать и на другое напряжения из расчета 4 вольта на виток , дроссель в выходном каскаде из того же фирита и имеет 20 витков ПЭВ-2 1,2мм.
Трансформатор Т2 имеет мощьность 4. 10ватт.
На силовые транзисторы нужны радиаторы пложадью 80см, на диоды выходного касада на каждый такие же.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector