0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Управляемый стабилитрон TL431 и Линейный Лабораторный блок питания 0-35В 0-1А (можно сделать и на 10А)

Управляемый стабилитрон TL431 и Линейный Лабораторный блок питания 0-35В 0-1А (можно сделать и на 10А)

Всем добрый день дорогие Муськовчане. Долго думал, писать этот обзор или нет. Но все же решил написать, что бы рассказать Вам, как можно сделать Лабораторный линейный блок питания с широкой регулировкой напряжения (грубо и точно) и ограничением тока. Главным электронным компонентом будет широко распространенный управляемый стабилитрон TL431. Я несколько раз покупал на Али эти радиодетали, как в в корпусе ТО-92, так и в SMD исполнении, так как данная деталь очень широко используется в радиотехнике. В общем, всех неравнодушных к электронике, любителей самоделок прошу под Кат…

Немного истории, это была первая схема которую я собрал после 25 летнего перерыва. Пришлось все осваивать заново, тем более технологии продвинулись, появилась возможность изготавливать печатные платы по технологии ЛУТ, о чем я даже не мог мечтать в далекой юности… И сразу же стал Вопрос №1 — кроме паяльника, авометра и канифоли любому радиолюбителю нужен Линейный лабораторный блок питания. Который я решил изготовить самостоятельно. Можно было бы, конечно, что -то сколхозить на LM317, и т.п свою первую поделку, но… Это не наш метод… ©, потому я решил сколхозить что-то посложнее…
Нашел форум «Паяльник», выбрал там схему… И пошло-поехало… Сразу предупреждаю схема не моя, а замечательного автора, моего ныне друга Владимира 65, я как раз попал на начало обсуждения этой схемы, которая была проверена только в мультисиме, и в железе, я и еще пару форумчан собирали и проходили все возможные грабли, загубив кучу радиодеталей… Все печатные платы были нарисованы самостоятельно, понятно, что очень далеки до совершенства, но тем не менее блок питания работает больше 3-х лет, давая очень чистое от помех выходное напряжение… Потом была изготовлена 2 и 3 версия, но у меня на столе до сих пор работает именно этот первый мой «колхозный» блок питания.
Я дам прямую ссылку на тему, желающие повторить данный блок питания могут выбрать кучу вариантов под любые свои нужды, там же есть архивы с печатными платами разных авторов (и моя в том числе), потому выбор есть… Вот ссылка на тему: forum.cxem.net/index.php?/topic/123103-лабораторный-бп-на-tl431
Поскольку обзор про управляемый стабилитрон TL431 то дам популярное описание, что это такое. Желающие пополнить свой багаж знаний могут пройти по этой ссылке и прочитать про микросхему самостоятельно: vprl.ru/publ/tekhnologii/nachinajushhim/tl431_chto_ehto_za_quot_zver_quot_takoj/9-1-0-17
Мы же не будем отвлекаться и будем собирать Лабораторный блок питания.
Схема первой версии Лабораторного блока питания на TL431 была такая, там присутствует 2 варианта силовой платы на 1 (или 1.5) Ампера и на 10 Ампер. Я вообще не понимаю ЛабБП на 10-20А… Это уже что угодно, но не Лабораторный блок питания… Но по многочисленным просьбам трудящихся, пусть будет 2 варианта:

Я же решил собрать вариант 0-35В и возможность ограничения тока 0-1А. И пока еще не было ни одного случая, когда мне бы не хватило возможностей моего блока питания, именно как источника «чистого» питания без помех. Потому я буду рассказывать про свою версию.
Вот краткое описание схемы от автора Владимира65

Читайте так же:
Синхронизация камеры и звука

Конструктивно источник питания состоит из 2-х плат, условно их назовем:
1. Плата управления

2. Силовая плата (на этой же плате расположен трансформатор для питания платы управления)

Увы, один силовой трансформатор нельзя использовать одновременно для силового напряжения и питания платы управления (если конечно не использовать отдельную, гальванически развязанную обмотку). У меня силовой трансформатор ТН-36, и я задействовал его все обмотки, потому пришлось купить небольшой трансформатор для питания платы управления.
Трансформатор ТН36 (Трансформатор Накальный) имеет мощность 30W и 4 независимые обмотки по 6.3В способные выдать ток 1.2А каждая. И это очень удобно, т. к позволяет ввести ручное (или автоматическое) переключение обмоток, что бы минимизировать тепловыделение на силовом транзисторе. Линейный блок питания, не смотря на замечательную чистоту выходного напряжения от помех, имеет такую особенность, что все «лишнее» напряжение падает на силовом транзисторе вызывая сильный нагрев… Рассмотрим на примере, скажем, вы на вход подали с трансформатора 30В, и выставили напряжение на выходе 5В. Грубо скажем, что 25В будут падать на силовом транзисторе и вызывать его сильный нагрев. Если же есть модуль переключения обмоток, то можно подать на выход не полное напряжение трансформатора, а скажем задействовать только одну обмотку с которой снимется 6В (а не 30), соотвественно на силовом транзисторе в тепло перейдет только 1В (а не 25В как выше было описано)…
Переключение обмоток было сделано на галетном переключателе. Схема ниже…

На рынке купил металлическую коробку от ЗУ «Ромашка», на его основе будет корпус моего ЛабБП На фото видно трансформатор и радиатор силового транзистора.

Пытаемся все собрать в кучу… Слабонервным не смотреть. ))))


Изготовил переднюю стенку из белого пластика… Получился вот такой симпатичный прибор…

Прибор имеет 3 ручки: 1. Регулировка ограничения тока; 2. Регулировка напряжения грубо; 3. Регулировка напряжения точно. Два светодиода, красный горит, когда блок находится в режиме ограничения тока, зеленый, когда блок находится в режиме стабилизации напряжения. Кроме того имеется ручка переключения обмоток, выключатель сетевого напряжения и 2 измерительных прибора: амперметр и Вольтметр.
В дальнейшем аналоговый прибор измерения напряжения был заменен электронным вольтметром с Али, т.к на шкале 0-30В точно выставить напряжение весьма проблематично.
Лицевая панель стала выглядеть так:

Колхозинг внутри под спойлером

Как можно заметить добавился еще один маленький трансформатор, для питания вольтметра, там же навесом распаян диодный мост и конденсатор. Вольтметр не прихотлив к питанию, потому подойдет любой трансформатор на 5-20В…
Вольтметр достаточно точный, и имеет небольшую погрешность…

Уже значительно позже, я купил осциллограф и замерил помехи на выходе при нагрузке 1А и напряжении 15В

Я до сих пор не очень умею читать осциллограммы, потому не буду комментировать результат, но мне кажется, что помех нет…
В общем в итоге у меня вышел отличный Лабораторный линейный блок питания, напряжение регулируется от 200мВ

и до 39В (без нагрузки или с слабой нагрузкой), при нагрузке 1А напряжение просаживается до 35В.

Мое животное прочитало обзор, судя по фото ему было ОЧЕНЬ интересно… Надеюсь Вам тоже…

Читайте так же:
Регулировка яркости экрана магнитолы

Блок питания

Мощный лабораторный источник питания 0-25В, 7А Мощный лабораторный источник питания 0-25В, 7А

Для настройки, ремонта автоэлектронных и радиотехнических устройств или зарядки аккумуляторных батарей необходимо иметь хороший источник питания. Использование современной схемотехники и элементной базы позволяют сделать в домашних условиях источник питания, по основным техническим.

Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А) Регулируемый импульсный стабилизатор напряжения с ограничением по току (2-25В, 0-5А)

Регулируемый импульсный стабилизатор напряжения с ограничением по току, позволяет не только питать различную аппаратуру стабильным напряжением от 2 до 25 вольт, но и заряжать различные аккумуляторы стабильным током до 5А. Описываемый блок питания позволяет регулировать стабилизированное выходное.

Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А) Источник питания на базе импульсного компьютерного БП (5-15В, 1-10А)

Предлагаемое устройство, помимо неплохих технических характеристик, привлекательно тем, что за его основу взят импульсный блок питания отслужившего свой срок IBM-совместимого персонального компьютера. При этом отпадает необходимость в приобретении многих специфических радиоэлементов, изготовлении.

Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В) Двуполярный источник питания для УНЧ на TDA2030, TDA2040 (18В)Блок питания предназначен для работы с усилителями, выполненными на микросхемах TDA2030, TDA2040, ТСА365, ТСА1365. После дополнения соответствующим сетевым трансформатором блок питания можно использовать для усилителей 2×15 Вт, 15 Вт,2 х 45 Вт. Из доступных в торговле трансформаторов подходят.
Регулируемый источник питания на LM317T (1-37В 1,5А) Регулируемый источник питания на LM317T (1-37В 1,5А)

Данный регулируемый источник питания демонстрирует применение интегральной схемы LM317T. Источник в форме модуля может быть использован везде, где требуется напряжение в диапазоне от 1 до 37 В и ток до 1,5 А. Используя его, также можно сконструировать стационарный источник питания с хорошими.

Регулируемый блок питания на ОУ LM324 (0-30В, 2А) Регулируемый блок питания на ОУ LM324 (0-30В, 2А)

Регулируемый блок питания является одним из основных устройств в ремонтной мастерской или каждого радиолюбителя. Представленный блок питания, несмотря на простоту конструкции, имеет хорошие характеристики. Он дает возможность плавной регулировкивыходного напряжения от 0 до 30 В, а также плавной.

Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А) Лабораторный источник питания на микросхеме LM324 (0-30 В, 1 А)

Регулируемый источник питания является одним из основных приборов в электронной лаборатории, ателье или на рабочем месте каждого электронщика. Представленный источник, несмотря на простоту конструкции, имеет хорошие характеристики. Он имеет возможность плавной регулировки выходного напряжения в.

Блок питания автомобильной радиостанции (13.8В, ЗА ) Блок питания автомобильной радиостанции (13.8В, ЗА )

Блок питания предназначен для питания устройств СВ 13,8 В с максимальным током 3 А. Для правильной работы блока питания следует использовать сетевой трансформатор с выходным напряжением 15 В и током, по крайней мере равным току, который дается блоком питания. Монтажный потенциометр служит для.

Источник питания со стабилизацией на UL7523 (3В) Источник питания со стабилизацией на UL7523 (3В)

Представляемый стабилизированный источник питания может служить регулируемым источником постоянного напряжения большой стабильности и малого выходного сопротивления. Схема имеет ограничение по току. Благодаря малому уровню пульсаций блок питанияособенно подходит для питания таких устройств, как.

Источник питания для гибридного трансивера (на лампах и транзисторах) Источник питания для гибридного трансивера (на лампах и транзисторах)

Выпрямитель для питания лампово-полупроводникового трансивера обеспечивает наряду с низковольтным напряжением для питания микросхем и относительно высокое напряжение для электронных ламп, устанавливаемых в усилителе мощности передатчика. Источник питания для гибридного .

Лабораторный блок питания: мастер-класс как сделать простое устройство своими руками

Каждый начинающий радиолюбитель нуждается в лабораторном блоке питания. Чтобы правильно его сделать, нужно подобрать подходящую схему, а с этим обычно возникает много проблем.

Читайте так же:
Регулировка скорости вращения вытяжного вентилятора

Краткое содержимое статьи:

Виды и особенности блоков питания

  • Импульсный;
  • Линейный.

Блок импульсного типа может рождать помехи, которые буду отражаться на настройке приемников и других передатчиков. Блок питания линейного типа может оказаться неспособным для выдачи необходимой мощности.

Как правильно сделать лабораторный блок питания, от которого можно будет заряжать АКБ, и питать, чувствительны платы схем? Если взять простой блок питания линейного типа на 1,3-30 В, и мощностью тока не более 5 А, то получится хороший стабилизатор напряжения и тока.

Воспользуемся классической схемой для сборки блока питания своими руками. Она сконструирована на стабилизаторах LM317, которые регулируют напряжение в диапазоне 1,3-37В. Их работа совмещена с транзисторами КТ818. Это мощные радиодетали, которые способны пропустить большой ток. Защитную функцию схемы обеспечивают стабилизаторы LM301.

Эта схема разработана достаточно давно, и периодически модернизировалась. На ней появилось несколько диодных мостов, а измерительная головка получила не стандартный метод включения. На замену транзистору MJ4502 пришел менее мощный аналог – КТ818. Так же появились фильтрующие конденсаторы.

Монтаж блока своими руками

При очередной сборке, схема блока получила новую интерпретацию. В конденсаторах выходного типа увеличилась емкость, а для защиты были добавлены несколько диодов.

Транзистор типа КТ818 был в этой схеме неподходящим элементом. Он сильно перегревался, и часто приводил к поломке. Ему нашли замену более выгодным вариантом TIP36C, в схеме он имеет параллельное подключение.

Поэтапная настройка

Изготовленный лабораторный блок питания своими руками нуждается в поэтапном включении. Первоначальный запуск проходит с отключенными LM301 и транзисторами. Далее проверяется функция регулирующая напряжение через регулятор Р3.

Если напряжение регулируется хорошо, тогда в схему включаются транзисторы. Их работа тогда будет хорошей, когда несколько сопротивлений R7,R8 начнут балансировать цепь эмиттера. Нужны такие резисторы, чтобы их сопротивление было на максимально низком уровне. При этом тока должно хватать, иначе в Т1 и Т2 его значения будут различаться.

Этот этап регулировки позволяет подсоединять нагрузку к выходному концу блока питания. Следует стараться избегать короткого замыкания, иначе транзисторы тут же перегорят, а вслед за ними стабилизатор LM317.

Дальнейшим шагом буде монтаж LM301. Сперва, нужно удостовериться, что на операционном усилителе в 4 ножке имеется -6В. Если на ней присутствует +6В, то возможно имеется неправильное подключение диодного моста BR2.

Так же подключение конденсатора С2 может быть неверным. Проведя осмотр и исправив дефекты монтажа, можно на 7 ножку LM301 давать питание. Это допустимо делать с выхода блока питания.

На последних этапах настраивается Р1, так чтобы он мог работать на максимальном рабочем токе БП. Лабораторный блок питания с регулировкой напряжения отрегулировать не так сложно. В этом деле лучше лишний раз перепроверить монтаж деталей, чем получить КЗ с последующей заменой элементов.

Основные радиоэлементы

  • Для питания потребуется трансформатор;
  • Несколько транзисторов;
  • Стабилизаторы;
  • Операционный усилитель;
  • Несколько разновидностей диодов;
  • Электролитические конденсаторы – не более 50В;
  • Резисторы разных типов;
  • Резистор Р1;
  • Предохранитель.

Номинал каждой радиодетали необходимо сверять со схемой.

Блок в конечном виде

Для транзисторов необходимо подобрать подходящий радиатор, который сможет рассеивать тепло. Более того, внутри монтируется вентилятор, для охлаждения диодного моста. Еще один устанавливается на внешнем радиаторе, который будет обдувать транзисторы.

Для внутренней начинки желательно подобрать качественный корпус, так как вещь получилась серьезной. Все элементы следует хорошо зафиксировать. На фото лабораторного блока питания, можно заметить, что на замену стрелочным вольтметрам пришли цифрового устройства.

Читайте так же:
Как отрегулировать пластиковые окна на плотное закрытие

Двухканальный лабораторный блок питания своими руками

В радиолюбительской практике нельзя обойтись одним стандартным блоком питания с фиксированным напряжением, так как электронные схемы необходимо питать от разного напряжения. Хороший лабораторный источник питания должен также иметь индикацию установленного напряжения и регулируемую защиту по току, чтобы в случае каких-либо проблем не вывести из строя подключенную конструкцию и не перегореть самому.

Такой универсальный блок питания можно приобрести, однако интереснее, а иногда и выгоднее собрать его самостоятельно. Тем более, что сейчас можно серьёзно сэкономить время разработки, взяв за основу универсальный преобразователь напряжения PW841 (см. рис.1.).

Это идеальное решение для реализации лабораторного блока питания, PW841 позволяет:

— устанавливать необходимое выходное напряжение в диапазоне 1…30В;

— регулировать максимальный потребляемый ток от 0 до 5А;

— индицировать на двух четырёхразрядных индикаторах одновременно напряжение и потребляемый ток;

— защищать от превышения выходного тока и от короткого замыкания в нагрузке.

Мастер Кит Двухканальный лабораторный блок питания своими руками универсальный преобразователь напряжения

Рис.1. Модуль Мастер Кит PW841

В качестве источника входного напряжения для PW841 можно применить готовый адаптер питания от бытовой техники. Удобно использовать сетевой адаптер от ноутбука: как правило, они имеют выходное напряжение 19В и ток нагрузки 3А и более. Нельзя получить на выходе готовой конструкции напряжение выше входного значения, но для большинства задач этого напряжения будет вполне достаточно. Чтобы сохранить возможность использовать адаптер ноутбука по прямому назначению, необходимо подобрать подходящее к его разъёму гнездо питания.

Но можно не искать лёгких путей и собрать силовую часть блока питания самостоятельно. Схема самого простого линейного источника питания приведена на рис.2.

Мастер Кит Двухканальный лабораторный блок питания своими руками Простейший трансформаторный блок питания

Рис.2. Простейший трансформаторный блок питания

Схема содержит трансформатор, диодный мост и конденсатор. Трансформатор понижает высокое сетевое напряжение 220В до необходимого безопасного уровня. Трансформатор можно приобрести или найти в старой технике (телевизорах, усилителях и т.п.). Но учтите, что в большинстве современных электронных конструкций применяются импульсные трансформаторы, а для сборки линейного источника питания подойдут именно классические трансформаторы: они обычно большие и тяжёлые.

Мне удалось найти трансформатор серии ТТП (трансформатор тороидальный). В этой серии очень много трансформаторов разных типов, отличающихся выходным напряжением, мощностью и количеством выходных обмоток. В моём случае у трансформатора одна первичная обмотка 220В (чёрные провода) и две одинаковые вторичные обмотки (выводы красных и белых проводов). Каждый из независимых выходов выдаёт переменное напряжение 15В с максимальным током нагрузки до 2А.

Раз уж мне повезло раздобыть трансформатор с двумя вторичными обмотками, я решил собрать двухканальный лабораторный блок питания на базе двух модулей PW841. В некоторых случаях электронной схеме для работы требуются два разных напряжения: например, 5В и 12В; и для наладки таких схем гораздо удобнее пользоваться двухканальным блоком питания.

Трансформатор выдаёт переменное напряжение, поэтому потребуется дополнить схему диодным выпрямителем. Удобнее использовать сборку из четырёх диодов в одном корпусе, которую можно приобрести или выпаять из неисправного блока питания. Я применил диодные мосты типа RS405, которые рассчитаны на ток до 4А, но больше в моём случае и не нужно. Также в схему необходимо включить конденсаторы фильтра, которые уберут пульсации напряжения после выпрямления переменного тока. Подойдут конденсаторы ёмкостью в несколько тысяч микрофарад. На рис.3. показаны компоненты, которые я использовал для сборки источника питания.

Читайте так же:
Регулировка объема воды в бачке унитаза

Мастер Кит Двухканальный лабораторный блок питания своими руками Компоненты для сборки трансформаторного блока питания

Рис.3. Компоненты для сборки трансформаторного блока питания

При выборе трансформатора и расчёте элементов схемы надо понимать, что после выпрямления постоянное напряжение становится выше переменного примерно в 1.4 раза. В моём случае из 15В переменного напряжения на выходе выпрямителя получилось 15х1.4=21В постоянного напряжения. Рабочее напряжение конденсатора необходимо выбирать с некоторым запасом, то есть в данном случае не менее 25В. Я нашёл конденсаторы ёмкостью 6800 мкФ и на рабочее напряжение 50В.

Осталось смонтировать всю конструкцию в корпусе подходящих размеров. Желательно подобрать более свободный корпус, чтобы трансформатор и электронные компоненты лучше охлаждались. Для этой же цели рекомендуется просверлить в корпусе вентиляционные отверстия, если они не были предусмотрены конструкцией изначально.

Мастер Кит Двухканальный лабораторный блок питания своими руками Монтаж блока питания в корпусе

Рис.4. Монтаж блока питания в корпусе

Трансформатор я притянул пластиковыми стяжками ко дну корпуса. Конденсаторы фильтров закрепил термоклеем из клей-пистолета, диодные мосты распаял прямо на выводах конденсаторов навесным монтажом. Параллельно выводам конденсаторов припаяны резисторы сопротивлением 6.8Мом: это необязательные компоненты, они служат для более быстрой разрядки конденсаторов после отключения блока питания от сети.

Для монтажа модулей PW841 пришлось их доработать: выпаял неиспользуемые белые разъёмы с лицевой части рядом с дисплеями и подстроечные резисторы регулировки тока и напряжения, их я заменил переменными резисторами соответствующего номинала (50 кОм).

Большинство компонентов блока питания я смонтировал на передней пластиковой панели корпуса (см. рис.5.).

Мастер Кит Двухканальный лабораторный блок питания своими руками Монтаж передней панели двухканального источника питания

Рис.5. Монтаж передней панели

В передней панели я просверлил четыре отверстия диаметром 7мм для переменных резисторов, выпилил два прямоугольных отверстия для индикаторов PW841, сами модули приклеил к передней панели клей-пистолетом. В качестве выходных клемм питания применил колодку аудиовыхода, выпаянную из сломанного музыкального центра. Под неё тоже пришлось выпилить окно. На боковой стенке установил сетевой выключатель питания.

Новые переменные резисторы и клеммы питания я соединил с соответствующими монтажными точками PW841 проводами. Для минимизации потерь тока желательно использовать гибкие проводники минимальной длины и сечением не менее 1.5 мм2.

Мастер Кит Двухканальный лабораторный блок питания своими руками Резистор, выключатель, разъём питания

Рис. 6. Резистор, выключатель, разъём питания

На рис.7. демонстрируется работа собранного блока питания. На левом канале установлено напряжение 5.03В, потребляемый ток – 90 мА, в качестве нагрузки используется резистор общим сопротивлением 50 Ом. Левый канал в этом примере работает в режиме классического источника питания, если же ток нагрузки превысит установленный порог, блок перейдёт в режим работы с ограничением тока, при этом на плате PW841 загорится соответствующий светодиод. На правом канале установлено напряжение 12В, он не нагружен. При токах нагрузки до 2А нагрев элементов схемы минимальный и дополнительного охлаждения не требуется. Если же Вы будете работать с более высокими токами и заметите перегрев компонентов схемы, обеспечьте активный обдув трансформатора и модуля PW841, установив в корпус блока питания компьютерный кулер.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector