0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Генератор импульсов на транзисторах с регулировкой частоты и скважности

Мультивибратор

Мультивибратор является одним из самых распространённых генераторов импульсов прямоугольной формы, используемый в электронике и радиотехнике. Обычно представляет собой двухкаскадный резистивный усилитель, охваченный глубокой положительной обратной связью.

В электронной технике используются самые различные варианты схем мультивибраторов, которые различаются между собой схемотехникой, типом используемых активных компонентов (ламповые, транзисторные, тиристорные, микроэлектронные и другие), различающиеся режимом работы (автоколебательный, ждущие, с внешней синхронизацией), видом связи между усилительными элементами, способам регулировки длительности и частоты генерируемых импульсов и другими параметрами.

Содержание

История [ править | править код ]

Мультивибратор изобретён в годы Первой Мировой войны французскими учеными Анри Абрахамом и Эженом Блохом и впервые описан в статье, опубликованной в журнале Annales de Physique в 1919 г. [1]

Название мультивибратор для устройства предложил голландский физик ван дер Поль, и отражает тот факт, что в спектре прямоугольных колебаний мультивибратора присутствует множество высших гармоник — в отличие от генератора синусоидальных колебаний («моновибратора»).

Некоторые типы и классификация мультивибраторов [ править | править код ]

Существуют три типа мультивибраторов в зависимости от режима работы:

  • нестабильный, автоколебательный или астабильный: устройство непрерывно генерирует колебания и самопроизвольно переходит из одного состояния в другое. При этом не обязателен внешний сигнал синхронизации, если не требуется захват частоты колебаний.
  • моностабильный: одно из состояний является стабильным, но другое состояние неустойчиво (переходное). Мультивибратор на некоторое время, определяемое параметрами его компонентов, переходит в неустойчивое состояние под действием запускающего импульса. Затем возвращается в устойчивое состояния до прихода очередного запускающего импульса. Такие мультивибраторы используются для формирования импульса с фиксированной длительностью, не зависящей от длительности запускающего импульса. Такой тип мультивибраторов иногда, в литературе, называют одновибраторы или ждущие мультивибраторы.
  • бистабильный: мультивибратор устойчив в любом из двух состояний и может быть переключён из одного состояния в другое подачей внешних импульсов. Такие устройства называют бистабильными триггерами. Такие триггеры иногда называют «мультивибраторами», что не корректно, так эти триггеры есть лишь подкласс мультивибраторов но никак не мультивибраторы вообще.

Отнесение мультивибратора к классу автогенераторов оправдано лишь при автоколебательном режиме его работы. В ждущем режиме мультивибратор генерирует импульсы только тогда, когда на его вход поступают синхронизирующие сигналы.

Режим синхронизации отличается от автоколебательного тем, что в этом режиме с помощью внешнего управляющего (синхронизирующего) колебания удаётся синхронизовать частоту колебаний автоколебательного мультивибратора под частоту синхронизирующего сигнала или сделать кратной ей (режим «захвата частоты») для автоколебательных мультивибраторов.

«Мультивибратор» Шмитта [ править | править код ]

Иногда мультивибраторами называют триггеры Шмитта — электронные схемы, физически являющиеся не мультивибраторами, но компараторами с гистерезисом.

Симметричный мультивибратор [ править | править код ]

Приведенная в качестве примера на рисунке «классическая» схема мультивибратора на двух транзисторах одного типа проводимости сейчас почти не применяется, так как имеет плохие частотные свойства и недостаточно крутые фронты, что ограничивает частоту его генерации единицами МГц. При уменьшении номиналов компонентов (сопротивлений резисторов и ёмкости конденсаторов) для повышения частоты генерации оба транзистора переходят в открытое или насыщенное состояние без генерации, — генерация самопроизвольно срывается, и для восстановления генерации устройство надо перезапускать, — например, подачей импульса на базу одного из транзисторов, что во многих применениях неприемлемо.

Симметричным мультивибратор называют при попарном равенстве сопротивлений резисторов R1 и R4, R2 и R3, ёмкостей конденсаторов C1 и C2, а также параметров транзисторов Q1 и Q2.

Симметричный мультивибратор генерирует прямоугольные колебания («меандр») со скважностью 2, то есть прямоугольный сигнал, у которого длительность импульса и длительность паузы одинаковы.

Симметричный мультивибратор по «классической» схеме широко используется для учебных и демонстрационных целей в качестве схемотехнически простейшего генератора электрических колебаний. Принцип работы этой схемы легко понять, а также эта схема удобна тем, что не требует для своей реализации громоздких и неудобных катушек индуктивности и трансформаторов.

Ждущие мультивибраторы [ править | править код ]

Моностабильный мультивибратор [ править | править код ]

Моностабильный мультивибратор, также нередко называемый одновибратором, есть разновидность ждущего мультивибратора. Имеет одно стабильное состояние и одно неустойчивое состояние. При поступлении запускающего импульса одностабильный мультивибратор переключается в неустойчивое состояние на время t = ln ⁡ ( 2 ) ⋅ R 2 ⋅ C 1 cdot C_<1>> , причём это время не зависит от длительности запускающего импульса (для схемы на рисунке 2), а затем возвращается в устойчивое состояние.

Бистабильный мультивибратор [ править | править код ]

Бистабильный мультивибратор — разновидность ждущего мультивибратора, имеющий два стабильных (устойчивых) состояния, характеризующихся разными уровнями напряжения на выходе. Как правило, бистабильные мультивибраторы переключаются из одного стабильного состояние в другое сигналами, подаваемыми на разные входы, как показано не схеме на рисунке. В этом случае бистабильный мультивибратор представляет собой триггер RS-типа. В некоторых схемах для переключения используется один вход, на который для переключения подаются импульсы различной либо одной полярности, при переключении состояний импульсами одной полярности на одном входе такие устройства называют «триггерами со счётным входом».

Читайте так же:
Софт для регулировки скорости кулеров

Бистабильный мультивибратор, кроме выполнения функции триггера, применяется также для построения генераторов, синхронизированных внешним сигналом. Такой тип бистабильных мультивибраторов характеризуется минимальным временем пребывания в каждом из состояний или минимальным периодом колебаний. Изменение состояния мультивибратора возможно только по прошествии определённого времени с момента последнего переключения (так называемое «мёртвое время переключения») и происходит в момент поступления фронта синхронизирующего сигнала.

Мультивибратор на операционном усилителе [ править | править код ]

Принципиально можно построить автоколебательный мультивибратор на инвертирующем компараторе с гистерезисом, охваченном отрицательной обратной связью. Пример такой структуры с использованием операционного усилителя (ОУ) приведён на рисунке справа.

Делитель напряжения из пары резисторов R4, включенных в цепь обратной положительной связи переводят ОУ в режим компаратора с гистерезисом по инвертирующему входу, к которому подключена интегрирующая цепочка R2, C1. При переключении компаратора из состояние в состояние происходит изменение направления тока в интегрирующей цепочке и конденсатор начинает перезаряжаться в другую сторону до достижения другого порога компарации, и переключения полярности напряжения на выходе ОУ. В этой схеме ОУ выполняет сразу несколько функций: источника напряжений разряда и заряда конденсатора, компаратора и выходного ключа.

Принцип действия «классического» двухтранзисторного мультивибратора [ править | править код ]

Схема может находиться в одном из двух нестабильных состояний и периодически переходит из одного в другое и обратно. Фаза перехода очень короткая относительно длительности нахождения в состояниях благодаря глубокой положительной обратной связи, охватывающей два каскада усиления.

Пусть в состоянии 1 Q1 закрыт, Q2 открыт и насыщен, при этом C1 быстро заряжается током открытого базового перехода Q2 через R1 и Q2 почти до напряжения питания, после чего при полностью заряженном C1 через R1 ток прекращается, напряжение на C1 равно (ток базы Q2)·R2, а на коллекторе Q1 — напряжению питания.

При этом напряжение на коллекторе Q2 невелико (равно падению напряжения на насыщенном транзисторе).

C2, заряженный ранее в предыдущем состоянии 2 (полярность по схеме), медленно разряжается через открытый Q2 и R3. При этом напряжение на базе Q1 отрицательно и этим напряжением он удерживается в закрытом состоянии. Запертое состояние Q1 сохраняется до того, пока C2 не перезарядится через R3 и напряжение на базе Q1 не достигнет порога его отпирания (около +0,6 В). При этом Q1 начинает приоткрываться, напряжение его коллектора снижается, что вызывает начало запирания Q2, напряжение коллектора Q2 начинает увеличиваться, что через конденсатор C2 ещё больше открывает Q1. В результате в схеме развивается лавинообразный регенеративный процесс, приводящий к тому, что Q1 переходит в открытое насыщенное состояние, а Q2 наоборот полностью запирается.

Далее колебательные процессы в схеме периодически повторяются.

Длительности нахождения транзисторов в закрытом состоянии определяются постоянными времени для Q2 — T2 = С1·R2, для Q1 — T1 = C2·R3.

Номиналы R1 и R4 выбираются намного меньшие, чем R3 и R2, чтобы зарядка конденсаторов через R1 и R4 была быстрее, чем разрядка через R3 и R2. Чем больше будет время зарядки конденсаторов, тем положительней окажутся фронты импульсов. Но отношения R3/R1 и R2/R4 не должны быть больше, чем коэффициенты усиления соответствующих транзисторов, иначе транзисторы не будут открываться полностью.

Мультивибратор

Мультивибратор

Если разобраться, вся электроника состоит из большого числа отдельных кирпичиков. Это транзисторы, диоды, резисторы, конденсаторы, индуктивные элементы. А уже из этих кирпичиков можно сложить всё, что угодно.

От безобидной детской игрушки издающей, например, звук «мяу», до системы наведения баллистической ракеты с разделяющейся головной частью на восемь мегатонных зарядов.

Одной из очень известных и часто применяющихся в электронике схем, является симметричный мультивибратор, который представляет собой электронное устройство вырабатывающее (генерирующее) колебания по форме, приближающиеся к прямоугольной.

Мультивибратор собирается на двух транзисторах или логических схемах с дополнительными элементами. По сути это двухкаскадный усилитель с цепью положительной обратной связи (ПОС). Это значит, что выход второго каскада соединён через конденсатор со входом первого каскада. В результате усилитель за счёт положительной обратной связи превращается в генератор.

Для того чтобы мультивибратор начал генерировать импульсы достаточно подключить напряжение питания. Мультивибраторы могут быть симметричными и несимметричными.

На рисунке представлена схема симметричного мультивибратора.

Схема мультивибратора

В симметричном мультивибраторе номиналы элементов каждого из двух плеч абсолютно одинаковы: R1=R4, R2=R3, C1=C2. Если посмотреть на осциллограмму выходного сигнала симметричного мультивибратора, то легко заметить, что прямоугольные импульсы и паузы между ними одинаковы по времени. t импульса (tи) = t паузы (tп). Резисторы в коллекторных цепях транзисторов не влияют на параметры импульсов, и их номинал подбирается в зависимости от типа применяемого транзистора.

Читайте так же:
Как отрегулировать кухонный гарнитур

Выходной сигнал симметричного мультивибратора

Частота следования импульсов такого мультивибратора легко высчитывается по несложной формуле:

Частота мультивибратора (формула)

,где f — частота в герцах (Гц), С — ёмкость в микрофарадах (мкФ) и R — сопротивление в килоомах (кОм). Например: С = 0,02 мкФ, R = 39 кОм. Подставляем в формулу, выполняем действия и получаем частоту в звуковом диапазоне приблизительно равную 1000 Гц, а точнее 897,4 Гц.

Сам по себе такой мультивибратор неинтересен, так как он выдаёт один немодулированный «писк», но если элементами подобрать частоту 440 Гц, а это нота Ля первой октавы, то мы получим миниатюрный камертон, с помощью которого можно, например, настроить гитару в походе. Единственно, что нужно сделать, это добавить каскад усилителя на одном транзисторе и миниатюрный динамик.

Основными характеристиками импульсного сигнала принято считать следующие параметры:

Частота. Единица измерения (Гц) Герц. 1 Гц – одно колебание в секунду. Частоты, воспринимаемые человеческим ухом, находятся в диапазоне 20 Гц – 20 кГц.

Длительность импульса. Измеряется в долях секунды: мили, микро, нано, пико и так далее.

Амплитуда. В рассматриваемом мультивибраторе регулировка амплитуды не предусмотрена. В профессиональных приборах используется и ступенчатая и плавная регулировка амплитуды.

Скважность. Отношение периода (Т) к длительности импульса (t). Если длина импульса равна 0,5 периода, то скважность равна двум.

Импульс

Исходя из вышеприведенной формулы, легко рассчитать мультивибратор практически на любую частоту за исключением высоких и сверхвысоких частот. Там действуют несколько другие физические принципы.

Для того чтобы мультивибратор выдавал несколько дискретных частот достаточно поставить двухсекционный переключатель и пять шесть конденсаторов разной ёмкости, естественно одинаковые в каждом плече и с помощью переключателя выбирать необходимую частоту. Резисторы R2, R3 так же влияют на частоту и скважность и их можно сделать переменными. Вот ещё одна схема мультивибратора с подстройкой частоты переключения.

Схема мультивибратора с подстройкой частоты

Уменьшение сопротивления резисторов R2 и R4 меньше определённой величины зависящей от типа применяемых транзисторов может вызвать срыв генерации и мультивибратор работать не будет, поэтому последовательно с резисторами R2 и R4 можно подключить переменный резистор R3, которым можно подобрат частоту переключений мультивибратора.

Практическое применение симметричного мультивибратора очень обширно. Импульсная вычислительная техника, радиоизмерительная аппаратура при производстве бытовой техники. Очень много уникальной медицинской техники построено на схемах, в основе которых лежит тот самый мультивибратор.

Благодаря исключительной простоте и невысокой стоимости мультивибратор нашёл широкое применение в детских игрушках. Вот пример обычной мигалки на светодиодах.

Схема "мигалки" на мультивибраторе

При указанных на схеме величинах электролитических конденсаторов С1, С2 и резисторов R2, R3 частота импульсов будет 2,5 Гц, а значит, светодиоды будут вспыхивать примерно два раза в секунду. Можно использовать схему, предложенную выше и включить переменный резистор совместно с резисторами R2, R3. Благодаря этому можно будет посмотреть, как будет изменяться частота вспышек светодиодов при изменении сопротивления переменного резистора. Можно поставить конденсаторы разных номиналов и наблюдать за результатом.

Будучи ещё школьником, я собирал на мультивибраторе переключатель ёлочных гирлянд. Всё получилось, но вот когда подключил гирлянды, то мой приборчик стал переключать их с очень высокой частотой. Из-за этого в соседней комнате телевизор стал показывать с дикими помехами, а электромагнитное реле в схеме трещало, как из пулемёта. Было и радостно (работает же!) и немного страшновато. Родители переполошились ненашутку.

Такая досадная промашка со слишком частым переключением не давала мне покоя. И схему проверял, и конденсаторы по номиналу были те, что надо. Не учёл я лишь одного.

Электролитические конденсаторы были очень старые и высохли. Ёмкость их была небольшая и совсем не соответствовала той, что была указана на их корпусе. Из-за низкой ёмкости мультивибратор и работал на более высокой частоте и слишком часто переключал гирлянды.

Приборов, которыми можно было бы измерить ёмкость конденсаторов в то время у меня не было. Да и тестером пользовался стрелочным, а не современным цифровым мультиметром.

Поэтому, если ваш мультивибратор выдаёт завышенную частоту, то первым делом проверяйте электролитические конденсаторы. Благо, сейчас можно за небольшие деньги купить универсальный тестер радиокомпонентов, которым можно измерить ёмкость конденсатора.

Генератор импульсов на транзисторах с регулировкой частоты и скважности

Принципиальные электрические схемы генераторов
импульсов на транзисторах и интегральных микросхемах

Читайте так же:
Как отрегулировать уплотнитель пластикового окна

Генераторы импульсов на транзисторах

Релаксационный генератор — симметричный мультивибратор на двух транзисторах [6]. Напряжение питания +U зависит от решаемой задачи и может составлять единицы — десятки вольт. Изменить полярность питающего напряжения можно, применяя транзисторы p-n-p. При R2 = R3 = R, C1 = C2 = C период следования импульсов на контактах "Выход" и "-Выход" равен 1.4 R C, а скважность (отношение длительности импульса к периоду следования импульсов) близка к 0.5 (длительность импульса равна длительности паузы). Сопротивление резисторов R1, R4 определяет нагрузочную способность генератора и может изменяться в широких пределах (десятки ом — десятки килоом). Сигналы на выходах "Выход" и "-Выход" находятся практически в противофазе. Скважность импульсов можно изменять, меняя соотношение R2 : R3 или C1 : C2.

Генераторы импульсов на ТТЛ-микросхемах (серии 133, 155, 531, 533, 555, 1531, 1533)

Генератор импульсов на трех элементах И-НЕ (четвертый элемент И-НЕ служит буфером, его можно не ставить), например, К155ЛА3. Вместо элементов И-НЕ могут быть использованы элементы ИЛИ-НЕ или инверторы. Частота следования импульсов при емкости конденсатора C1 = 0.047 мкФ составляет примерно 10 кГц. Может применяться в качестве задающего генератора.

Генератор импульсов на двух элементах И-НЕ, например, К155ЛА3. Вместо элементов И-НЕ могут быть использованы элементы ИЛИ-НЕ или инверторы. Для получения устойчивой генерации сопротивление резистора R1 должно быть меньше 470 Ом. Частота следования импульсов при R1 = 300 Ом, C1 = 0.1 мкФ составляет примерно 10 кГц. Может применяться в качестве задающего генератора.

Генератор импульсов на двух элементах И-НЕ, например, К155ЛА3. Вместо элементов И-НЕ могут быть использованы элементы ИЛИ-НЕ или инверторы. Для получения устойчивой генерации сопротивление резисторов R1, R2 может быть примерно по 470 Ом. Частота следования импульсов при R1 = R2 = 470 Ом и C1 = 0.1 мкФ составляет примерно 6 кГц. Может применяться в качестве задающего генератора. Отсоединив один из входов элемента DD1 от другого, можно с его помощью управлять генерацией ("пуск-останов").

Генератор импульсов — симметричный мультивибратор на двух элементах И-НЕ, например, К155ЛА3. Вместо элементов И-НЕ могут быть использованы элементы ИЛИ-НЕ или инверторы. Частота следования импульсов при R1 = R2 = 4.7 кОм и C1 = C2 = 0.1 мкФ составляет примерно 2.5 кГц. Для улучшения формы выходных импульсов могут использоваться буферные элементы.

Генератор импульсов на трех инверторах (например, К155ЛН1) с кварцевой стабилизацией частоты. Частота кварцевого резонатора ZQ1 — единицы мегагерц. Может применяться в качестве задающего генератора импульсов для микроконтроллеров и других устройств, когда требуется высокая стабильность частоты.

Генераторы импульсов на КМОП-микросхемах (серии 176, 561, 1554, 1561)

Генератор импульсов на трех инверторах с минимальным количеством навесных элементов (один конденсатор). Частота следования импульсов на контакте "Выход" при емкости конденсатора C1 = 0.1 мкФ составляет несколько килогерц. Может применяться в качестве задающего генератора в устройствах, не предъявляющих высоких требований к стабильности частоты. Вместо инверторов могут быть использованы элементы И-НЕ, ИЛИ-НЕ с объединенными входами.

Генератор импульсов на трех элементах ИЛИ-НЕ (например, К561ЛЕ5) с минимальным количеством навесных элементов (один конденсатор) и функцией "пуск — останов". Частота следования импульсов на контакте "Выход" при емкости конденсатора C1= 0.1 мкФ составляет несколько килогерц. Когда уровень напряжения на входе "Стоп" равен единице, генерация импульсов прекращается. Может применяться в качестве задающего генератора в устройствах, не предъявляющих высоких требований к стабильности частоты. По аналогичной схеме может быть построен генератор на элементах И-НЕ. Тогда прекращение генерации будет происходить при нулевом уровне напряжения на входе 'Стоп".

Генератор импульсов на двух элементах ИЛИ-НЕ, например К561ЛЕ5 (или двух элементах И-НЕ, или двух инверторах). Частоту следования импульсов можно изменять, изменяя емкость конденсатора C1. При R1 = 36 кОм, C1 = 180 пФ частота следования импульсов на выходе "OUT" приблизительно равна 100 кГц. Один из входов микросхемы DD1 можно отсоединить от другого и подавать на него сигнал управления генерацией ("пуск-останов").

Генератор импульсов на двух элементах ИЛИ-НЕ (например, К176ЛЕ5) с кварцевой стабилизацией частоты. В качестве кварца может быть использован часовой кварц на частоту 32768 Гц. Вместо элементов ИЛИ-НЕ могут быть применены элементы И-НЕ или инверторы. Величина резистора R1 подбирается для обеспечения стабильной работы генератора на заданной частоте. Может применяться в качестве задающего генератора для устройств, в которых требуется высокая стабильность рабочей частоты.

Генератор импульсов со скважностью 0.5 (длительность импульса равна длительности паузы). При R1 = 36 кОм, C1 = 180 пФ частота следования импульсов на выходах "OUT" и "-OUT" приблизительно равна 50 кГц. Сигналы на выходах "OUT" и "-OUT" находятся в противофазе.

Читайте так же:
Как правильно отрегулировать фурнитуру на пластиковых окнах

Генератор двух противофазных последовательностей импульсов с паузой [3]. Пауза равна длительности импульса. Может использоваться в качестве задающего генератора для импульсных полумостовых преобразователей напряжения. Частота следования импульсов на выходах "OUT 1" и "OUT 2" приблизительно равна 25 кГц при R1 = 36 кОм, C1 = 180 пФ.

Генераторы импульсов на интегральном таймере 555 (КР1006ВИ1)

Генератор импульсов частотой 100 Гц на интегральном таймере КР1006ВИ1 (DA1). R1 = 6.8 кОм, R2 = 10 кОм, R3 = 680 Ом, C1 = 1 мкФ, C2 = 0.1 мкФ. Переменный резистор R1 служит для точной подстройки частоты импульсов. Напряжение питания (+E) до +15 В. Может применяться в качестве задающего генератора для преобразователей напряжения систем аварийного электропитания.

Схемы простых генераторов импульсов

Генераторы импульсов являются важной составляющей многих радиоэлектронных устройств.

Простейший генератор импульсов

Простейший генератор импульсов (мультивибратор) может быть получен из двух-каскадного УНЧ (рис. 1). Для этого достаточно соединить вход усилителя с его выходом.

Простейший генератор импульсов - мультивибратор, схема

Рис. 1. Простейший генератор импульсов — мультивибратор, схема.

Рабочая частота такого генератора определяется значениями R1C1, R3C2 и напряжением питания.

Схемы мультивибраторов

На рис. 2, 3 показаны схемы мультивибраторов, полученные простой перестановкой элементов (деталей) схемы, изображенной на рис. 1. Отсюда следует, что одну и ту же простейшую схему можно изобразить различными способами.

Схема мультивибратора на транзисторах

Рис. 2. Схема мультивибратора на транзисторах.

Схема мультивибратора на транзисторах с небольшой перестановкой деталей на схеме

Рис. 3. Схема мультивибратора на транзисторах с небольшой перестановкой деталей на схеме.

Использование мультивибраторов

Практические примеры использования мультивибратора приведены на рис. 4, 5.

схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов

Рис. 4. Схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов.

На рис. 4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей.

Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3.

На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-

Генератор переменной частоты - схема

Рис. 5. Генератор переменной частоты — схема.

Генератор переменной частоты (рис. 5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора C3 500 мкФ).

Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6.

Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора C3. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.

Управляемый генератор

Управляемый генератор прямоугольных импульсов показан на рис. 6 [Р 10/76-60]. Генератор также представляет собой двухкаскадный усилитель, охваченный положительной обратной связью. Для упрощения схемы генератора достаточно соединить эмиттеры транзисторов конденсатором.

Управляемый генератор прямоугольных импульсов - схема

Рис. 6. Управляемый генератор прямоугольных импульсов — схема.

Емкость этого конденсатора определяет рабочую частоту генерации. В данной схеме для управления частотой генерации в качестве управляемой напряжением емкости использован варикап. Увеличение запирающего напряжения на варикапе приводит к уменьшению его емкости. Соответственно, как показано на рис. 7, возрастает рабочая частота генерации.

Как возрастает рабочая частота генерации

Рис. 7. Как возрастает рабочая частота генерации.

Варикап, в порядке эксперимента и изучения принципа работы этого полупроводникового прибора, можно заменить простым диодом. При этом следует учитывать, что германиевые точечные диоды (например, Д9) имеют очень малую начальную емкость (порядка нескольких пФ), и, соответственно, обеспечивают небольшое изменение этой емкости от величины приложенного напряжения.

Кремниевые диоды, особенно силовые, рассчитанные на большой ток, а также стабилитроны, имеют начальную емкость 100. 1000 пФ, поэтому зачастую могут быть использованы вместо варикапов. В качестве варикапов можно применить и р-n переходы транзисторов.

Для контроля работы, сигнал с генератора (рис. 6) можно подать на вход частотометра и проверить границы перестройки генератора при изменении величины управляющего напряжения, а также при смене варикапа или его аналога. Рекомендуется полученные результаты (значения управляющего напряжения и частоту генерации) при использовании разного вида варикапов занести в таблицу и отобразить на графике (см., например, рис. 7). Отметим, что стабильность генераторов на RC-элементах невысока.

Читайте так же:
Регулировка поворота ручки пластиковых окон

Схемы генераторов световых и звуковых импульсов

На рис. 8, 9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений.

Схема генератора световых импульсов, собранного на транзисторах

Рис. 8. Схема генератора световых импульсов, собранного на транзисторах.

Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое.

Схема генератора звуковых импульсов собранного на транзисторах

Рис. 9. Схема генератора звуковых импульсов собранного на транзисторах.

Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 8) можно включить генератор по схеме на рис. 9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.

Генератор импульсов с пьезокерамическим излучателем

Генератор импульсов (рис. 10), выполненный на составном транзисторе (п-р-п и р-п-р), не содержит конденсаторов (в качестве частотозадающего конденсатора использован пьезокерамический излучатель BF1).

Генератор работает при напряжении от 1 до 10 Б и потребляет ток от 0,4 до 5 мА. Для повышения громкости звучания пьезокерамического излучателя его настраивают на резонансную частоту подбором резистора R1.

Генератор импульсов с пьезокерамическим излучателем

Рис. 10. Генератор импульсов с пьезокерамическим излучателем.

Генератор релаксационных колебаний

На рис. 11 показан достаточно оригинальный генератор релаксационных колебаний, выполненный на биполярном лавинном транзисторе.

Генератор содержит в качестве активного элемента транзистор микросхемы К101КТ1А с инверсным включением в режиме с «оборванной» базой. Лавинный транзистор может быть заменен его аналогом (см. рис. 1).

Устройства (рис. 11) часто используют для преобразования измеряемого параметра (интенсивности светового потока, температуры, давления, влажности и т.д.) в частоту при помощи резистивных или емкостных датчиков.

Генератор релаксационных колебаний - схема

Рис. 11. Генератор релаксационных колебаний — схема.

При работе генератора конденсатор, подключенный параллельно активному элементу, заряжается от источника питания через резистор. Когда напряжение на конденсаторе достигает напряжения пробоя активного элемента (лавинного транзистора, динистора или т.п. элемента), происходит разряд конденсатора на сопротивление нагрузки, после чего процесс повторяется с частотой, определяемой постоянной RC-цепи.

Резистор R1 ограничивает максимальный ток через транзистор, препятствуя его тепловому пробою. Времязадающая цепь генератора (R1C1) определяет рабочую область частот генерации.

В качестве индикатора звуковых колебаний при качественном контроле работы генератора используют головные телефоны. Для количественной оценки частоты к выходу генератора может быть подключен частотомер или счетчик импульсов.

Устройство работоспособно в широком интервале изменения параметров: R1 от 10 до 100 кОм (и даже до 10 МОм), С1 — от 100 пФ до 1000 мкФ, напряжения питания от 8 до 300 В. Потребляемый устройством ток обычно не превышает одного мА.

Возможна работа генератора в ждущем режиме: при замыкании базы транзистора на землю (общую шину) генерация срывается. Преобразователь-генератор (рис. 11) может быть использован и в режиме сенсорного ключа, простейшего Rx-и Сх-метра, перестраиваемого широкодиапазонного генератора импульсов и т.д.

Генераторы импульсов на лавинных транзисторах

Генераторы импульсов (рис. 12, 13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или аналогах динисторов и лавинных транзисторов (см. рис. 1).

Схема генератора импульсов на лавинных транзисторах К101КТ1

Рис. 12. Схема генератора импульсов на лавинных транзисторах К101КТ1.

Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора.

Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.

Схема генератора импульсов на лавинных транзисторах К162КТ1

Рис. 13. Схема генератора импульсов на лавинных транзисторах К162КТ1.

Генераторы импульсов с использованием индуктивной обратной связи

Довольно простые и часто встречающиеся на практике генераторы импульсов (блокинг-генераторы) с использованием индуктивной обратной связи показаны на рис. 14 [А. с. СССР 728214], 15 и 16.

Генератор импульсов с использованием индуктивной обратной связи - схема

Рис. 14. Генератор импульсов с использованием индуктивной обратной связи — схема.

Такие генераторы обычно работоспособны в широком диапазоне изменения напряжения питания. При сборке блокинг-генераторов необходимо соблюдать фазировку выводов: при неправильном подключении «полярности» обмотки генератор не заработает.

Схема блокинг-генератора на транзисторе

Рис. 15. Схема блокинг-генератора на транзисторе.

Схема блокинг-генератора на транзисторе КТ315 с минимумом деталей

Рис. 16. Схема блокинг-генератора на транзисторе КТ315 с минимумом деталей.

Подобные генераторы можно использовать при проверке трансформаторов на наличие межвитковых замыканий: никаким иным методом такие дефекты не могут быть выявлены.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector