0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основы регулирования системы отопления

Основы регулирования системы отопления

Данная статья открывает цикл материалов, который буден посвящен различным аспектам регулирования систем отопления — проектированию, расчетам, используемому оборудованию и сферам его применения. В этой статье остановимся на целях, общих принципах и особенностях регулирования систем водяного отопления.

Задачи регулирования в системах отопления.

Основной целью регулирования отопления является поддержание заданной температуры в помещении при изменяющихся внешних условиях. То есть, вне зависимости от уличной температуры, силы ветра, влажности и прочих условий, в нашем доме должен поддерживаться заданный тепловой комфорт.

Упрощенно, понятие процесса регулирования системы отопления можно охарактеризовать следующим образом:

Регулирование системы отопления – это комплекс мер по максимальному приближению теплоотдачи отопительных приборов к текущей потребности объекта в тепле для поддержания требуемой внутренней температуры при постоянном изменении внешних условий.

Так как в системах водяного отопления нужную нам температуру, как правило, обеспечивают приборы отопления (радиаторы, конвекторы, водяные теплые полы и т.д.), то для поддержания заданной температуры теплоотдача отопительных приборов должна иметь возможность изменяться в зависимости от изменений внешних условий. Если не рассматривать механическое ограничение теплоотдачи отопительного прибора, которое до сих пор иногда применяется в конструкции конвекторов (воздушная заслонка на конвекторе с кожухом), основными способами изменения теплоотдачи являются изменение расхода теплоносителя через прибор и/или изменение температуры теплоносителя.

Таким образом, главная цель регулирования — поддержание требуемой температуры в помещении трансформируется в две основные частные задачи:
— обеспечение расчетного расхода теплоносителя через приборы отопления;
— задание требуемой температуры теплоносителя.

Кроме того, нужно иметь в виду, что в процессе регулирования, как правило, меняются гидравлические режимы работы системы, что может приводить к нарушению стабильности работы и появлению нежелательных шумов. Поэтому в системе регулирования должны быть предусмотрены меры по предотвращению этих негативных явлений.

Суть процесса регулирования отопления.

В общих чертах, процесс регулирования заключается в том, что величина регулируемого параметра находится под постоянным контролем и сравнивается с каким-то заданным значением этого параметра или величиной другого параметра. И в зависимости от их значения подвергается регулированию. Назовем совокупность элементов и алгоритмов регулирования, участвующих в этом процессе регулировочным контуром. Стоит сразу отметить, что таких контуров в системе отопления может быть достаточно много. Примерами таких регулировочных контуров являются поддержание температуры в помещении с помощью отопительного прибора по комнатному термостату или с помощью термостатического клапана на радиаторе отопления, регулирование котловой температуры теплоносителя в зависимости от температуры наружного воздуха, поддержание заданной температуры теплоносителя в водяном теплом поле и так далее.

Замкнутый регулировочный контур

Рассмотрим простейший замкнутый регулировочный контур, состоящий из прибора отопления, комнатного термостата, выполняющего функции измерительного устройства и контроллера, а также сервопривода с термостатическим клапаном, в качестве исполнительного устройства.

regul kontur

Рис. Замкнутый процесс регулирования в системе отопления

В рассматриваемом контуре регулируемый параметр – температура воздуха в помещении (х), которая формируется под воздействием прибора отопления и некого возмущающего воздействия, например, открытого окна. Для примера, заданное на термостате значение температуры (w) примем равным 23°С, а значение временно сформировавшейся температуры – равным 21°С. Температура воздуха постоянно контролируется измерительным устройством, в качестве которого может служить датчик температуры, встроенный в комнатный термостат. Результат измерения передается на контроллер, который в нашем примере также встроен в термостат. Контроллер сравнивает измеренное значение (21°С) с заданным (23°С) и при наличии рассогласования, подаёт управляющий сигнал на сервопривод на открытие, либо закрытие термостатического клапана. Исполнительное устройство формирует управляющее воздействие (в нашем случае увеличение расхода теплоносителя) на радиатор отопления, вследствие чего его теплоотдача увеличивается и повышает температуру воздуха в помещении. Таким образом образовался замкнутый регулировочный контур, в котором температура в помещении является и регулируемым и контролируемым параметром, и в процессе регулирования влияет сама на себя.

Читайте так же:
Ремонт и регулировка запорной арматуры на окнах

Открытый регулировочный контур

Рассмотрим другой пример контура регулирования, достаточно распространенного в современных системах отопления. Это — так называемый, открытый контур.

OpenKontur

Рис. Пример открытого регулировочного контура

Особенность открытого регулировочного контура заключается в том, что, в отличие от закрытого контура, контролируемая и регулируемая величины относятся к различным параметрам. В данном примере контролируемая величина — это температура наружного воздуха, регулируемая — температура теплоносителя, подаваемая в контур теплого пола.

Отопительные кривые

Принцип работы такой схемы регулирования заключается в следующем. Температура наружного воздуха (контролируемая величина) регистрируется датчиком (1), в результате чего формируется сигнал (Y), уровень которого зависит от измеренной температуры. Сигнал поступает на измерительный модуль контроллера (2) (в нашем примере контроллер встроен в котел отопления). Одновременно с помощью датчика (3) регистрируется температура теплоносителя в контуре теплого теплого пола (регулируемая величина), сигнал (х) от которого также передается в измерительное устройство. В контролерре происходит оценка того, насколько температуры (уровни сигналов) соответствуют настройкам. Обычно, соответствие контролируемой и регулируемой температур задается с помощью диаграмм. И в случае выявления несоответствия, подается управляющий сигнал (Z) на сервопривод трехходового клапана (4), в результате чего изменяются пропорции смешения горячего и остывшего теплоносителя и, таким образом, изменяется температура в контуре теплого пола.

Регуляторы температуры отопительных систем: предназначение и виды, особенности выбора и установки

Терморегулятор

Современные отопительные системы чаще всего имеют терморегулятор, с помощью которого регулируется температура в помещении.​ Регуляторы температуры — приборы, которые помогают регулировать температуру в помещении. С их помощью можно установить периодичность, интенсивность и режим обогревателей. Если не контролировать системы отопления, то это может привести к пожару и возникновению высокой температуры, которая будет некомфортной для человека.

Предназначение регуляторов отопительных систем

Благодаря регуляторам температуры можно автоматически управлять всеми обогревателями и предотвращать сжигание кислорода, отсутствие которого плохо влияет на здоровье и самочувствие человека. Благодаря терморегулятору можно по мере надобности включать и выключать отопление и поддерживать в помещение удобную температуру.

Терморегулятор для радиатора

Терморегуляторы используют для:

  • контролирования температуры в помещении;
  • создания микроклимата;
  • сохранение кислорода в доме;
  • экономии тепла.

Разновидности регуляторов систем отопления

Для систем отопления используют терморегуляторы нескольких видов:

  • механические;
  • электронные;
  • электромеханические.

С их помощью можно контролировать температуру и поддерживать удобный климат в помещении. Независимо от того, какой регулятор будет применяться, каждый из них обладает достоинствами и недостатками.

Читайте так же:
Регулировка окна эксцентрик прижим

Электронные регуляторы

Электронный терморегулятор состоит из 3 главных элементов:

  • микропроцессора;
  • датчика;
  • ключа.

Электронный терморегулятор

Датчик измеряет температуру воздуха, микропроцессор обрабатывает и передает сигнал, а с помощью ключа совершается коммуникация управления.

Преимущества электронных терморегуляторов заключаются в:

  • высокой точности;
  • легкости настройки и управлении отопительными системами.

Применяются электронные регуляторы для того, чтобы управлять отопительной системой квартиры или дома и регулировать работу кондиционеров, а также других систем, которые отвечают за поддержку и создание в помещении комфортного микроклимата.

Терморегуляторы электронного образца могут легко монтироваться в систему умного дома и следить за температурой обогревателей и помещений.

Механические регуляторы отопления

Терморегулятор механического типа для радиатора состоит из:

  • клапана;
  • термической головки.

Механический терморегулятор

Эти два элемента работают слажено и без использования посторонней энергии. Термическая головка состоит из нескольких частей: привода, регулятора, газового, жидкостного или упругого элемента.

Принцип работы механического регулятора достаточно прост — колесико с температурой выставляется на нужный уровень с помощью ручного управления.

Механические регуляторы кроме регулировочного колесика могут иметь кнопку включения и выключения, управляются и включаются такие регуляторы только вручную.

Электромеханические регуляторы

Одним из самых простых регуляторов, считается электромеханический. Главным его элементом считается реле, которое бывает нескольких видов, но в системе отопления применяется используется регулятор с реле, у которого некоторые элементы расширяются в момент нагревания.

Такой тип регулятора применяется в масляных радиаторах и бойлерах, где реле представляет собой цилиндрическую трубку, которая наполнена чувствительной жидкостью. Трубка находится в маленьком бачке с водой, которая нагревается.

Выбор терморегулятора

Выбор терморегулятора зависит от:

  • внешних климатических условий;
  • количества приборов отопления;
  • видов обогревателей.

Выбирая регулятор температуры, необходимо учитывать все факторы, которые могут повлиять на его работу.

Системы отопления и регулирование температуры

Отопительные системы могут быть нескольких видов: водяные, паровые, воздушные и комбинированные. Регуляторы температуры могут устанавливаться на любую из них.

Терморегулятор

Водяное отопление — самый распространенный вариант отопления, где теплоносителем выступает вода, а источник энергии может быть любой.

Электрическое отопление удобное, практичное, безопасное и надежное. Регулировка температуры происходит в зависимости от заданной и действительной температуры.

Механические регуляторы очень просты в использовании и стоят намного дешевле электронных аналогов. Регулирующие механизмы устанавливаются на отопительные приборы к магистрали подачи теплоносителя. Принцип работы механического регулятора очень прост, потому что датчик встроен в клапан, а регулировка температуры происходит за счет увеличения и уменьшения теплоносителя в радиаторе.

Установка регуляторов

Регулятор температуры встраивается в систему и измеряет температуру теплоносителя и внешних параметров, для того чтобы уменьшить его нагрев, необходимо установить нужную температуру на электронном регуляторе или просто подкрутить колесико на механическом.

Устанавливаются регуляторы в нагревательных приборах там, где применяется теплоноситель, а также в автономных приборах и комплексах автономного нагрева и отопления.

Самым оптимальным местом установки терморегулятора является радиатор, отопительный прибор, но только в том случае, если он не закрыт шторами или декоративными решетками. В случае если он будет закрыт, то регулятор температуры будет неправильно и неадекватно ее измерять.

Читайте так же:
Как отрегулировать экран монитора самсунг

Устанавливать регуляторы можно также на горизонтальной части трубопровода, но рядом с точкой ввода в отопительный прибор.

Чтобы измерения температуры были точными в случае наличия декоративных деталей на радиаторе, следует установить дополнительный термостатический элемент, который будет расположен на некотором расстоянии от датчика, что позволит корректно измерить температуру.

Регуляторы температуры очень хорошо экономят тепло и создают в помещении комфортную обстановку. Независимо от того, какой регулятор будет установлен и какого производства, все они хорошо регулируют температуру. Электронные регуляторы более удобные в использовании, но механические дешевле и надежные.

Температура теплоносителя и ее регулировка

Основные элементы системы регулировки температуры

[содержание h2 h3]В данной статье мы разберёмся как подбирается, от чего зависит и как регулируется температура теплоносителя в отопительных системах. Особое внимание уделим таким устройствам как регуляторы отопления, которые в настоящее время являются обязательным элементом современной эффективной системы теплоснабжения.

При выборе температуры руководствуются несколькими факторами:

  1. Достижение комфортного (нормативного) температурного режима в отапливаемых помещениях;
  2. Обеспечение стабильной и экономичной работы котельного оборудования;
  3. Эффективная передача тепла по трубопроводам.

Какой должна быть температура воды в теплосети

Отопительная система должна работать так, чтобы в помещениях всегда было комфортно. Температурный режим регламентируется нормативными документами (например, в жилых домах это 18 градусов, в больницах и детских садах 21 градус). Но в зависимости от температуры на улице здание теряет разное количество тепла через ограждающие конструкции и с потоками воздуха при вентиляции.

Нагрев воды в системе отопления здания варьируется в довольно широких пределах в зависимости от внешних факторов. Это могут быть температуры от 30-40 до 85-90 градусов (выше 90 начинается разложение пыли и лакокрасочных покрытий, поэтому более горячие трубы запрещены санитарными нормами).

Для точного определения необходимой температуры используются разработанные для каждого здания (или их группы) температурные графики, где выражена зависимость параметров теплоносителя от температуры наружного воздуха или используется автоматическая регулировка по показаниям датчика в помещении.

Определение оптимальной температуры для работы котельной и транспортировки тепловой энергии

Регулятор температуры для одной батареи

Регулятор температуры для одной батареи

Для наиболее эффективной отдачи котлов желательна по возможности более высокая температура, выгодна она и при передаче по системе трубопроводов, так как тот же объем воды может перенести тем больше энергии, чем выше его температура. Поэтому температуру воды на выходе из котла стараются приблизить к самым высоким допустимым пределам.

Кроме того, минимальный нагрев теплоносителя в котле не может быть ниже точки росы (в зависимости от особенностей конкретного оборудования и вида топлива это 60-70 градусов), иначе котел начинает «плакать» — при горении конденсируется вода, которая вкупе с агрессивными веществами дымовых газов приводит к его усиленному износу.

Как согласовать необходимую температуру воды для отопления и котла

В этом случае есть два подхода. Первый – пренебречь эффективностью работы котлов и выдать на выходе такую температуру теплоносителя, которая нужна для системы отопления при данных условиях. Так обычно делают на небольших котельных. Но и в этом случае все равно не всегда удается подать теплоноситель по оптимальному температурному графику.

В частности, при положительных наружных температурах нужный нагрев для отопления бывает 40-45 градусов, а для подогрева горячей воды нужно минимум 50 и чем-то приходится жертвовать.

Но сейчас, все чаще даже на небольших котельных используют установленный на выходе регулятор (о нем ниже), который обеспечивает оптимальный режим для котлов и необходимую температуру в системе отопления, используя датчики наружной температуры;

Читайте так же:
Как отрегулировать слив бачка унитаза cersanit

Второй подход – нагрев теплоносителя на выходе из котельной и при транспортировке по магистральным сетям максимальный, а в непосредственной близости от потребителя регулятор доводит параметры воды до необходимых значений. Это наиболее прогрессивный способ, который применяется на всех крупных тепловых сетях, а в связи с удешевлением таких устройств как регулятор и датчики он все шире используется и на небольших объектах.

Как работает регулятор отопления

Принцип работы системы отопления с регулятором температуры

Регулятор это устройство, обеспечивающее автоматический контроль и корректировку температурных параметров теплоносителя циркулирующего в системе отопления. Он состоит из следующих узлов и элементов:

  1. Вычислительный и коммутирующий блок;
  2. Исполнительный механизм на линии подачи теплоносителя;
  3. Исполнительный механизм для подмеса воды из обратки (иногда используется трехходовой кран и тогда они совмещаются);
  4. Повысительный насос на линии «холодного перепуска» (не всегда);
  5. Повысительный насос на линии подачи;
  6. Запорная арматура и клапана;
  7. Датчик на подаче теплоносителя;
  8. Датчик на обратке;
  9. Датчик температуры внешнего воздуха;
  10. Датчик (датчики в нескольких местах) температуры помещения;

Последние две позиции могут использоваться как совместно так и вместо друг друга в зависимости от того чем задается график отопления.

Теперь разберемся с тем, как собственно происходят процессы управления, как работает регулятор.

Основные элементы системы регулировки температуры

Основные элементы системы регулировки температуры

Температура теплоносителя на выходе из системы отопления (обратка) зависит от объема прошедшей через нее воды, так как нагрузка относительно постоянная. Поэтому регулятор, прикрывая подачу воды, увеличивает разность между подачей и обраткой до необходимого значения (на этих трубопроводах врезаются датчики), до необходимого значения.

Если нужно наоборот увеличить поток, то в систему отопления врезается повысительный насос, которым также командует регулятор. Для понижения температуры входящего потока используется так называемый «холодный перепуск» – часть воды проциркулировавшей по системе снова направляется на вход.

Таким образом, перераспределяя потоки в зависимости от данных, которые снимают датчики, регулятор обеспечивает жесткий температурный график системы отопления.

Одна из моделей блока регулятора фирмы Vailant

Одна из моделей блока регулятора фирмы Vailant

Часто регулятор отопления комбинируют с регулятором ГВС, применяя один вычислительный блок. Регулятор горячей воды гораздо проще в части управления и исполнительных механизмов. Используя датчик на линии горячего водоснабжения, производится регулировка прохода теплоносителя через бойлер, и обеспечиваются стабильные 50 градусов, которые требует стандарт.

Преимущества использования регулятора в системе

  1. Четко выдерживается температурный график (особенно если используется датчик внутри помещения);
  2. Исключается повышенный нагрев теплоносителя в системе отопления и обеспечивается экономия энергии и топлива;
  3. Выработка и транспортировка тепла производятся при наиболее эффективных для котельных или ТЭЦ параметрах, необходимые характеристики теплоносителя в системе отопления и температуру горячей воды обеспечивает регулятор в приближенном к потребителю тепловом пункте или узле;
  4. Регулятор позволяет обеспечить одинаковые условия для всех потребителей в независимости от их удаления от источника теплоснабжения, так как параметры подходящей к нему сетевой воды выше, чем те, которые нужны для отопления.
Читайте так же:
Дрель makita с регулировкой оборотов

Как происходит циркуляция воды в системе отопления и как обеспечить ее эффективную и продолжительную работу смотрите на видео:

Способы регулировки температуры теплого пола и воздуха в помещении с теплым полом

Регулировка температуры воздуха в помещении с теплым полом

Отопление дома теплым полом, как единственным источником тепла, встречается последнее время, все чаще. Но, как регулировать температуру воздуха, или температуру пола в отдельном помещении, люди, как правило не задумываются, либо думают, что это можно сделать с помощью распределительного коллектора теплого пола.

Забегая вперед, хочется сказать, что наша компания Водокомфорт предлагает своим заказчикам комбинированную систему отопления (теплый пол + радиаторы отопления). В данном случае организовать автоматическую регулировку температуры достаточно просто, теплый пол настраивается на поддержание определенной, не слишком большой температуры на подаче в теплый пол всего дома. В данном варианте, теплый пол нужен для поддержания комфортной температуры пола и нагрева помещения до определенной температуры, которая зависит от утепления дома и температуры снаружи. Радиаторы же при помощи термостатических кранов и термоголовок повышают температуру воздуха в помещении до нужных значений. В данной схеме из автоматики используются только термоголовки, и не нужны никакие дополнительные провода и комнатные термостаты.

У данной схемы, конечно же есть и минусы, но основные плюсы — простота, доступная цена, создание комфортных условий в доме.

Если же стоит задача автоматически регулировать температуру воздуха в помещении и температуру поверхости теплого пола, то возможны следующие варианты:

  • регулировка температуры теплоносителя на подаче в коллектор (для всей поверхности)
  • регулировка температуры воздуха в отдельном помещении (регулировкой теплого пола)
  • регулировка температуры воздуха + пола в отдельном помещении + регулировка всей подачи (регулировкой теплого пола)
  • регулировка температуры воздуха + пола в отдельном помещении + регулировка всей подачи (регулировкой теплого пола и регулировкой радиаторов)

Рассмотрим необходимое количество оборудования для каждого случая

Регулировка температуры теплоносителя во всём полу

В обычном случае, регулировка температуры теплоносителя на подаче в пол регулируется при помощи трехходового термостатического клапана, установленного в виде отдельной позиции, либо в комлекте со смесительным узлом. Данный вентиль всегда пытается поддерживать на выходе выставленную температуру. При понижении температуры на улице приходится в ручную преоткрывать вентиль, повышая температуру в подаче, и закрывать, при понижении температуры воздуха снаружи.

Для автоматизации этого процесса в место трехходового термостатического клапана (вентиля) применяют трехходовые смесительные клапаны с установленным на него сервоприводом. Для управления таким сервоприводом необходим какой-то погодозависимый контроллер. Ориентировочная стоимость такого комплекта — от 40000 рублей. Отдельно, такая схема редко применяется, чаще она используется для предварительной регулировки теплоносителя во всей системе напольного отопления (следующие варианты управления температурой).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector