0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

БЛОКИ ПИТАНИЯ И ИХ ПРИМЕНЕНИЕ

БЛОКИ ПИТАНИЯ И ИХ ПРИМЕНЕНИЕ

Виды и типы блоков питания

Для работы бытовой и промышленной техники, от компьютеров и холодильников до станков и автоматизированных узлов сборки, необходима электрическая энергия с подходящими параметрами: напряжением, частотой и силой тока.

Чтобы обеспечить нормальное функционирование — или хотя бы правильное отключение — приборов при выходе из строя сети, к которой они подключены, используются источники вторичного электропитания, или блоки питания. Как они устроены и каких видов бывают, будет рассказано ниже.

НАЗНАЧЕНИЕ УСТРОЙСТВ

Блок питания постоянного тока — это прибор, преобразующий исходные параметры электросети в требуемые для работы подключённых к ней технически сложных устройств. Чаще всего речь идёт о снижении и выпрямлении напряжения — именно оно имеет критическое значение для сохранности оборудования.

Второе назначение блоков питания — обеспечения работы устройств при временном отключении основной сети. Такое оборудование исполняет одновременно функции трансформатора и аккумулятора и при возобновлении электрического питания автоматически подзаряжается от сети.

Наконец, трансформаторные блоки питания могут использоваться и для соединения двух цепей в «опасных» точках — например, в местах с повышенной влажностью, наличием в воздухе проводящих или химически активных частиц и так далее.

Устройство в этом случае необязательно должно быть понижающим — часто коэффициент преобразования равен единице: и на входе, и на выходе вольтметр сохраняется среднее значение в 220 вольт.

Обычно один прибор выполняет сразу несколько функций: это и трансформатор, и аккумулятор, и изолированный «посредник»; чтобы дать пользователю возможность проверять и регулировать выходные параметры электричества, производителя снабжают устройства индикаторами напряжения, силы тока и (или) мощности, тумблерами и плавными переключателями.

Универсального сетевого блока питания не существует: такое устройство было бы крайне сложным в исполнении и ремонте, а кроме того, отличалось бы большой массой и высокой стоимостью.

РАЗНОВИДНОСТИ ПРИБОРОВ

  • линейные;
  • импульсные.

В состав устройств первого типа непременно входят трансформатор, конвертирующий исходное напряжение в более низкое, и выпрямитель, преобразующий переменный ток стандартной частоты (в России — около 50 герц) в постоянный, требуемый для работы бытовой или промышленной техники.

Дополнительными составляющими являются фильтр, предназначенный для нивелирования всплесков и провалов напряжения, стабилизатор, высокочастотный фильтр и защита от коротких замыканий.

Все эти компоненты позволяют получить на выходе идеально ровный сигнал, что особенно важно для чувствительных электроприборов: чем «чище» подаваемый на них ток, тем дольше они могут прослужить.

  • простота устройства и ремонта;
  • повышенная надёжность;
  • минимальный, вплоть до нулевого, процент помех и колебаний в выходном сигнале;
  • доступность — трансформаторные устройства стоят сравнительно недорого.
  • габаритность — занимают как минимум в два раза больше места, чем импульсные;
  • массивность — характеристики используемых составляющих не позволяют сделать трансформаторные блоки лёгкими;
  • невысокий КПД — потери энергии в сети с подключённым устройством составляют не менее 15%.

В импульсных, или инверторных блоках питания происходят более сложные преобразования: сначала переменный ток преобразуется в постоянный, а затем формируются импульсы высокой частоты, подаваемые, через малогабаритный высокочастотный трансформатор, на выпрямитель и фильтр ВЧ, затем выход.

  • малогабаритные первичные преобразователи переменного напряжения в постоянное;
  • стабилизаторы, работающие по принципу отрицательной обратной связи и гарантирующие «ровный» результирующий сигнал;
  • низкочастотные фильтры, обеспечивающие отсутствие помех на выходе.

К дополнительным компонентам относятся иные или дублирующие фильтры, защита от короткого замыкания и нулевой нагрузки, а также трансформаторы выходного переменного сигнала в постоянный.

  • небольшие габариты — такие устройства как минимум в два раза меньше линейных;
  • небольшая масса — весят инверторные блоки сравнительно немного;
  • высокий КПД — потери при включении оборудования в сеть лежат в диапазоне 2…10%.
  • сложность устройства и ремонта;
  • большая, по сравнению с линейными блоками, стоимость;
  • высокочастотные помехи, отрицательно сказывающиеся на работе чувствительных приборов.

В настоящее время и линейное, и импульсное оборудование оснащено стабилизаторами, позволяющими получить на выходе ровный, без резких скачков, сигнал. Стабилизированный блок питания продлевает срок службы бытовой и промышленной техники, а также, даже без использования дополнительной защиты, снижает риск короткого замыкания в сети.

ХАРАКТЕРИСТИКИ ОБОРУДОВАНИЯ

  • мощность;
  • выходное напряжение;
  • сила тока на выходе;
  • коэффициент полезного действия;
  • наличие дополнительных опций;
  • габариты и масса;
  • стоимость.

Мощность измеряется в ваттах или, по сохранившейся традиции, в вольт-амперах. Максимальное значение, которое может выдать устройство на выходе, обязательно указывается в его характеристиках; в идеале оно должно на 15–30% превышать суммарную потребляемую мощность всех подключённых к сети через блок питания приборов.

Например, если для работы первого изделия требуется 15 Вт, второго — 6 Вт, а третьего — 9 Вт, мощность стабилизированного блока питания должна составлять: (15 + 6 + 9)×(1,15…1,30), то есть от 34,5 до 39 ватт. Устройства, выдающие большие значения, использовать можно; меньшие — нет.

Читайте так же:
Как регулировать разрешение экрана монитора

У холодильников, насосов и ряда других устройств она может превышать постоянную более чем в пять раз, что необходимо закладывать в расчёты.

Если для запуска первого из перечисленных в примере выше приборов требуется мощность, в три раза превышающая потребляемую в ходе функционирования, расчёты будут выглядеть следующим образом: (15×3 + 6 + 9)×(1,15…1,30), то есть требуемая мощность оборудования должна составлять от 69 до 78 ватт.

Устройство, выдающее только номинальные 60 Вт, может оказаться недостаточно эффективным — или владельцу придётся на время пуска отключать другие два электроприбора.

Выходное напряжение.

Поскольку значение напряжения на входе не зависит от воли пользователя и в бытовой сети составляет приблизительно 220 В, с существенными колебаниями в меньшую или большую сторону, значение имеет лишь выходной параметр. Он может быть единственным (например, 12 В) или переключаемым — от 6 до 20 вольт или в любом другом предусмотренном производителем диапазоне.

В отличие от мощности, подбирать выходное напряжение нужно по ближайшему значению, не обязательно в большую сторону. Если для функционирования техники нужно 12,3 В, а в наличии имеются устройства с показателями 12 и 16 вольт, отдать предпочтение следует первому.

Хотя не все приборы требуют стабилизации напряжения, выбирать нужно устройства с этой функцией; они универсальны и подходят для любой техники, в то время как использование блока без стабилизатора может привести к выходу дорогостоящего оборудования из строя.

Выходная сила тока.

Этот параметр прямо связан с мощностью и напряжением, а потому зачастую не указывается. При подборе оборудования по силе тока нужно, как и в случае с мощностью, просуммировать потребляемые подключённой аппаратурой значения и прибавить к результату 15–30%

Например, если для работы первого прибора требуется 2 А, второго — 0,5 А, а третьего — 6 А, блок питания должен выдавать как минимум: (2 + 0,5 + 6)×(1,15…1,30), то есть от 9,8 до 11,1 ампера. По аналогии с ранее приведёнными расчётами нужно учитывать и пусковые значения, часто превышающие рабочие.

С целью упростить подбор оборудования можно руководствоваться эмпирическим правилом: если требуемое значение силы тока менее 5 А, нужно выбирать трансформаторный блок; если более — импульсный.

Коэффициент полезного действия.

Тут всё просто: чем выше КПД, тем эффективнее прибор и тем меньше потери электроэнергии в сети. Высокая стоимость блоков питания с КПД 95…98% со временем окупится экономией на потребляемом токе — а значит, приобретение устройства с максимальным параметром имеет смысл.

Дополнительная защита.

Наличие в устройстве блока защиты от перегрузок, полной разрядки, короткого замыкания, перегревания в ходе работы, резких скачков напряжения и повышения силы тока увеличивает стоимость изделия, зато даёт владельцу почти стопроцентную гарантию безопасности.

При выборе устройства следует обращать внимание на наличие регуляторов выходных параметров (плавных или ступенчатых), индикаторов, показывающих входных и выходные параметры тока (шкальных или цифровых), а также работу от сети или в автономном режиме (светодиодных), и возможности ручного разрыва сигнала (обычно реализуется в виде тумблера).

Чем больше информации сможет владелец получить о состоянии блока питания, тем безопаснее будет его работа и тем меньше риск преждевременного выхода из строя, «вылета» сети или короткого замыкания с последующим возгоранием.

Габариты и масса.

Здесь, как и в случае с КПД, всё прозрачно: чем компактнее и легче блок питания, тем он удобнее в эксплуатации — но, как правило, тем больше за него придётся заплатить.

Указанные параметры не являются краеугольными: если условиями работы являются большая мощность и высокий КПД, устройство просто не может быть слишком маленьким, тем более если подразумевается наличие в нём дополнительных функций.

Наиболее дорогими и качественными в отношении выходного сигнала являются промышленные блоки питания; но если пользователю необходимо обеспечить работу компьютера, телевизора и видеопроигрывателя, никакой необходимости в излишних тратах нет. Достаточно найти подходящий по перечисленным выше параметрам прибор — и, сравнив цены, выбрать идеальную модель.

© 2014-2021 г.г. Все права защищены.
Материалы сайта имеют ознакомительный характер, могут выражать мнение автора и не подлежат использованию в качестве руководящих и нормативных документов.

Блок питания с регулировкой силы тока

Попалась в интернете недавно любопытная схемка простого, но довольно неплохого блока питания начального уровня, способного выдавать 0-24 В при ток до 5 ампер. В блоке питания предусмотрена защита, то есть ограничение максимального тока при перегрузке. В приложенном архиве есть печатная плата и документ, где приведено описание настройки данного блока, и ссылка на сайт автора. Прежде чем собирать, прочитайте внимательно описание.

Схема БП с регулировкой тока и напряжения

Изначально на фото печатной платы автора были ошибки, печатка была скопирована и доработана, ошибки устранены.

Читайте так же:
Регулировка напряжения блока питания at в регулируемый блок питания

Вот фото моего варианта БП, вид готовой платы, и можно посмотреть как примерно применить корпус от старого компьютерного ATX. Регулировка сделана 0-20 В 1,5 А. Конденсатор С4 под такой ток поставлен на 100 мкФ 35 В.

При коротком замыкании максимум ограниченного тока выдается и загорается светодиод, вывел резистор ограничителя на переднюю панель.

Индикатор для блока питания

Провёл у себя ревизию, нашёл пару простеньких стрелочных головок М68501 для этого БП. Просидел пол дня над созданием экрана для него, но таки нарисовал его и точно настроил под требуемые выходные напряжения.

Сопротивление используемой головки индикатора и применённый резистор указаны в прилагаемом файле на индикаторе. Выкладываю переднюю панель блока, если кому понадобится для переделки корпус от блока питания АТХ, проще будет переставить надписи и что-то добавить, чем создавать с нуля. Если потребуются другие напряжения, шкалу можно просто подкалибровать, это уже проще будет. Вот готовый вид регулируемого источника питания:

Плёнка — самоклейка типа "бамбук". Индикатор имеет подсветку зелёного цвета. Красный светодиод Attention указывает на включившуюся защиту от перегрузки.

Дополнения от BFG5000

Максимальный ток ограничения можно сделать более 10 А. На кулер — кренка 12 вольт плюс температурный регулятор оборотов — с 40 градусов начинает увеличивать обороты. Ошибка схемы особо не влияет на работу, но судя по замерам при КЗ — появляется прирост проходящей мощности.

Силовой транзистор установил 2n3055, все остальное тоже зарубежные аналоги, кроме BC548 — поставил КТ3102. Получился действительно неубиваемый БП. Для новичков-радиолюбителей самое-то.

Выходной конденсатор поставлен на 100 мкФ, напряжение не скачет, регулировка плавная и без видимых задержек. Ставил из расчёта как указано автором: 100 мкф ёмкости на 1 А тока. Авторы: Igoran и BFG5000.

Обсудить статью БЛОК ПИТАНИЯ С РЕГУЛИРОВКОЙ ТОКА И НАПРЯЖЕНИЯ

Лабораторный блок питания может пригодится практически каждому радиолюбителю для отладки и работы с электроникой. В данной статье мы рассмотрим сборку лабораторного блока питания, схема которого довольно известна в сети интернет. Схема является довольно популярной, была собрана множеством радиолюбителей по всему миру. В виду её популярности, в Китае так же наладили производство кит-набора, с помощью которого можно спаять схему, немного сэкономив на времени при изготовлении печатной платы, и поиске компонентов. Я решил заказать этот набор, и посмотреть что из этого получится. В блоке питания имеется регулировка как по току, так и напряжению. Данный пост будет содержать минимум теории, и больше фото для показа что в итоге получилось.

Принципиальная схема блока питания:

Схема найдена в интернете, некоторые компоненты на схеме выше заменены советскими аналогами, в целом схема идентична.

Сам набор с компонентами добрался в таком виде:

Перед началом сборки выяснилось что некоторые компоненты пришли ни тех номиналов. Что касается подобного рода посылок, то это довольно распространённая практика. Поэтому рекомендуется всегда проверять элементы перед сборкой. В моём случае шунтирующий резистор (R7) оказался 47 Ом, а должен быть 0.47 Ом. Кроме того операционники оказались с дефектом, и после сборки не регулировалось напряжение и ток. Всё исправилось заменой этих компонентов. Читал в интернете, у некоторых схема начинает работать сразу после сборки. У некоторых приходят с дефектами или неправильными номиналами элементов. Очевидно, мне попалось и то и другое, в общем с ситуацией разобрался, и плата собрана и работает.

На схеме так же имеется стабилизатор напряжения 7824, я решил заменить его на 7812, который будет выдавать 12 В для запитки куллера + индикатора напряжения и тока.

В качестве трансформатора временно решил использовать от старого бесперебойника. Плата вывозит нагрузку на 3А, однако легко дорабатывается некоторой заменой компонентов. После этого при необходимости можно повысить выдаваемый ток блоком питания. Протестировав схему, стало понятно, что радиатор на выходном транзисторе маловат в своих габаритах, и не справляется с рассеиванием тепла. После чего решил прикрутить транзистор на радиатор от старого 478-го процессора. Как положено, с использованием термопасты для лучшей проводимости, т.к. узел весьма показался мне уязвимым в вопросе перегрева.

Решил повесить нагрузку в пару ампер на блок питания, посмотреть как быстро будет греться радиатор на транзиcторе. Минуты две при такой нагрузке радиатор спокойно рассеивает температуру после чего уже требуется принудительное охлаждение. Решил немного доработать охлаждение радиатора, и вместо того, чтобы вентилятор жужал постоянно, сделал схему, которая будет включать его при пиковых нагрузках. В сети интернет есть схема, которая реализована за счёт необычной способности транзистора КТ315 менять свои свойства при смене температуры.

Схема регулятора оборотов вентилятора охлаждения:

Собрал эту схему довольно быстро, она так же популярна в сети интернет. Особенность этой схемы в том, что в качестве датчика выступает транзистор КТ315. Этот транзистор к счастью оказался под рукой. Что касается VT2 то я решил заменить его современным аналогом, т.к. в магазинах всё реже можно найти детали старой базы.

Читайте так же:
Регулировка арматуры сливного бачка унитаза с одной кнопками

Самое время делать корпус для блока питания и собирать это всё дело в кучу. Т.к. под рукой оказался корпус от бесперебойника компьютера, решил попробовать затолкать в него все компоненты, а так же сделать более правильную "морду", с регуляторами индикаторами и тумблером.

Переменные резисторы решил заказать другие, т.к. регулировка с многооборотистым резистором гораздо плавнее. В ходе испытаний выяснилось что индикатор напряжения имеет погрешность 0,01В, а вот что касается тока, то там наблюдается нелинейность в измерении. Исправляется пайкой одной перемычки на плате (в сети много об этом есть постов). Крепёж под "бананы", а так же тумблер включения питания.

Вот такая тушка под корпус лабораторника, переднюю и заднюю панель я открутил, так как она не пригодится, и панели у прибора будут другие.

В качестве материала для панели решил взять гетинакс, толщиной 5 мм. Причина такого выбора в том что его легко обрабатывать, диэлектрик, да и оказался под рукой.

Отверстия сверлились свёрлами и отрезными дисками для бор машины. Процесс изготовления корпуса — творческий, а поэтому в моём случае затянуться на больше чем ожидалось).

Элементы на панели вырезанные из листа гетинакса не стыковались с отверстиями которые были на железном корпусе. Таким образом чтобы разместить элементы потребовалось так же немного подрезать сам металлический корпус.

Урезая корпус под нужды элементов управления, это его значительно ослабляет в плане жесткости. Я же стремился сделать его более надёжным и качественным. В итоге простая переделка перешла в фазу "глубокой" переделки, в ходе чего была срезана задняя панель полностью, и добавлены рёбра жесткости.

Для примерки первый крепёж был сделан что называется на "шару" для того чтобы немного прикинуть размещение элементов. В ходе чего было выяснено, что так же потребуется сделать дополнительную планку по центру, чтобы прикрутить к ней два радиатора, и пару схем.

Сделал всё как задумал, хоть и можно было проще затолкать как получиться, но хотелось сделать как виделось правильным. Оставил запас места под трансформатор большего размера. Сам трансформатор разместил по центру, для более правильной развесовки прибора, а так же рассеивания тепла. Радиатор разместил ближе к задней стенке где находится вентилятор кулера. Сама плата блока питания так же находится ближе к кулеру. Плата управления ближе к передней панели, и в таком положении, чтобы место в центральной части где находится трансформатор оставалась в запасе.

Немного творческого беспорядка, на пару дней, в итоге подогнал все элементы по местам, и спаял узлы в последствии. Радиатор изолировал от корпуса, в итоге были сделаны специальные посадочные площадки из гетинакса которые одной стороной крепились к корпусу другой к радиатору. Получился некий пазл, которой держал всё это дело прочно на своих местах.

После первой сборки и спайки самоё время проверить работоспособность прибора. После сборки прибор включился но регулировалось напряжение и ток. В итоге выяснилось, что многооборотистые резисторы были припаяны немного неправильно, и это дело быстро исправилось. В целом, всё практически готово. Датчик регулятора скорости вращения вентилятора (транзистор КТ315) так же был прикручен около выходного транзистора блока питания, который размещался на радиаторе. Таким образом он быстрее реагирует на смену температуры выходного транзистора не дожидаясь нагрева всего радиатора.

Регуляторы на переменные резисторы мне показались довольно габаритными для этой панели, поэтому ставить их пока не стал, и заказал другие специальные для данного типа резисторов.

Вот такой получился танк. На задней панели сделаны отверстия под для вентилятора, предохранитель, а так же гнездо питания на 220 В. Центральный контакт гнезда как и положено заземлил на корпус блока питания. Хотя в наших розетках и нету третей точки — заземления, но пускай будет хотя бы в приборе, на будущее.

Проводка в блоке так же была связана, чтобы не было механического воздействия на места припоя при эксплуатации прибора.

В дальнейшем прибор так же планируется дорабатываться и в плане мощности, и возможно немного по внешнему виду. А пока результат он выглядит таким вот образом.

Сама плата с базовыми элементами способна выдавать от 0 до 30 Вольт, с током от 0 до 3 Ампер. Осциллограммы к сожалению показать не могу, т.к. нет осциллографа под рукой. Конечно это не много, ну и не мало тоже. По этой причине в дальнейшем планируется доработка в сторону увеличения мощности, путем замены элементной базы, от трансформатора до транзисторов. Разумеется насколько это позволят сами дорожки платы.

Читайте так же:
Как регулировать окна купе

Всем привет! Давно хочу написать, но все не хватает времени, а сегодня вот как-то не могу найти чем заняться…напишу об очередной доработке блока питания. Предыдущая часть здесь www.drive2.ru/b/2195993/

Блок питания активно использовался все это время, и показал себя с отличной стороны. Использовал его в основном для всяких поделок и несколько раз для подкачки колес компрессором. Подкачка колес была непростым испытанием, ток несколько раз переваливал за 10А. Насчет самого блока питания, я не сомневался, что он выдержит такую нагрузку, но вольтамперметр рассчитан на ток до 10А, а глядя на проводки которыми он подключается и разъем, думаю, и того меньше! Но все на удивление выдержало.

И вот решил я расширить универсальность прибора, добавив ограничение по току, чтобы можно было заряжать автомобильный аккумулятор, да и любой другой аккум. В инете есть много схем о переделке компьютерного БП с ограничением по току. Как и с регулировкой напряжения, с ограничением по току может справляться все та же TL494. Но эти переделки показались мне слишком сложными, и я решил пойти другим путем. На али был найден подходящий понижающий DC-DC преобразователь с регулировкой напряжения и тока. Вот ссылочка. Вход от 7 до 32В, выход — от 0,8 до 28В, максимальный ток 12А.

После этого я принялся все переделывать. Выбросил все лишнее из БП, убрал регулировку напряжения, впаял в плату подстроечный резистор и выставил напряжение около 17В, чтобы на выходе было около 15В. Все провода заменил на качественный медный провод сечением более 3 квадратов. Все разъемы выкинул, все на пайке. К вольтамперметру тоже протянул нормальный провод и припаял прямо к плате. Преобразователь закрепил внутри корпуса. Вентилятор запитал от шины +5В (на ней сейчас около 7В). Добавил на корпус резиновые ножки. Вообщем все сделал не на страх, а на совесть.

Теперь всем доволен…почти))) Хочу еще вентилятор переставить, чтобы он вдувал воздух вовнутрь, но имеющийся кулер этого не позволяет сделать, так как крепеж у него только с одной стороны. И пора обновить красочку. Уже перестал считать, во сколько он мне обошелся, так как наверное уже смог бы купить готовый аналогичный БП, но самому сделать ведь интереснее))

Блок питания 12В

Блок питания 12В

Для работы любого станка ЧПУ надо снабдить его нужным количеством напряжения и тока. Раньше использовались аналоговые (трансформаторные). Сейчас на замену пришли импульсные преобразователи напряжения. Аналоговые модели имеют большие размеры и вес, поэтому их использование в домашних приборах нецелесообразно. Также данные приборы отличаются высокой стоимостью.

Смысл любого источника питания (блока питания) – преобразовать напряжение, получаемое им в нужное нам для устройства. В аналоговом это делает силовой трансформатор. В импульсном основной частью является инвертор, где трансформация происходит путем широтно-импульсной модуляции. То есть преобразование происходит в высокочастотные импульсы в определенной последовательности.

Выбирая источник для устройства, следует грамотно подойти к расчету необходимого напряжения на выходе и силы тока, ведь от него будет питаться вся электроника и двигатели механизма. По выходному вольтажу бывают 12 В и 24 В, не будем рассматривать промышленные варианты. Для большинства моделей собранных самостоятельно, таких как 3D-принтеры, лазерные граверы, подходит блок 12 вольт. Так как длинных проводов нет, то и потери будут небольшие. Также на выбор влияет оснащение механизма, тип шаговых двигателей, плат и другого.

Мощность или сила тока рассчитывается исходя из суммы всего тока требуемого для станка. Во всех элементах в описании можно найти эти значения. Причем необходимо рассчитать в 1.3-1.5 раза больше. Для приборов с частями, где необходима большая сила тока, например, нагревательный стол 3D-принтера, и все части подключены к одному элементу, отлично подойдет мощный блок питания 12В, выдающий 29 Ампер.

Это достаточно большой, мощный одноканальный питающий элемент для станка ЧПУ. С учетом мощности и выдаваемой силы тока удобно, что в корпусе размещен вентилятор, не дающий перегреваться устройству. Вентилятор регулируется автоматически, при увеличении температуры начинает работать быстрее. Эта функция называется Fan Control On-Off и имеет реально полезное свойство.

Корпус металлический, имеет перфорацию с возможностью монтажа на шасси. Корпус оснащен светодиодом, по которому понятно работает прибор или нет. Присутствует подстроечный резистор для регулировки выходного вольтажа, можно уменьшить или увеличить напряжение от паспортного.

Данная модель подойдет для использования в местах, где есть перепады в электросети, когда ее работа не является стабильной. Блок питания 12В оснащен защитой от перегрузки и перенапряжения в сети. Также от короткого замыкания. От воздействия внешних температур, в частности, от перегрева. При завершении экстремальных условий защита возвращается к стабильному состоянию.

Читайте так же:
Регулировка скорости вентилятора вентиляции

Еще одно преимущество блока питания – возможность переключения входного напряжения, что позволит работать в любом месте. Главное быть осторожным, не переключить регулятор при использовании от розетки 220В. Иначе все внутри сгорит: диодный мост, трансформатор и инвертор пострадают в первую очередь. В общем-то, можно будет выкинуть его.

Производителей таких инверторов достаточно много. Самый известный тайваньский –Mean Well. Производится он в Китае, но имеет достаточно неплохое качество и гарантию. Китайские аналоги немного дешевле, однако, обладают уже расплывчатыми характеристиками, неточностями в сборке. В некоторых было замечено отсутствие заявленного регулятора вентилятора. А в некоторых вообще вентилятор стоял другой стороной, охлаждал не трансформатор, который нагревается, а корпус.

Подключая мощный блок питания 12В лучше воспользоваться старым методом проверки неисправностей, чтобы не повредить основное устройство. Сделать это можно подключив обычную светодиодную лампочку. Если она загорается и гаснет, значит все в порядке. Подключается блок к сети и к плате Ардуино. Что требуется, так это не забывать про заземление и не пренебрегать этим. При соблюдении всех условий подключения и правильном выборе необходимых характеристик все будет работать от блока питания мощностью 348 Вт с током в 29 Ампер. Пользоваться источником очень удобно из-за его небольших размеров и маленького веса. При всех характеристиках он весит один килограмм. Монтаж его простой, так как есть перфорация на корпусе.

Блоки питания 12В

Работу таких популярных на сегодняшний день Led источников света обеспечивают блоки питания, преобразующие переменное входное в постоянное напряжение 12 В. Это связано с тем, что большая доля Led источников не рассчитана на использование от сети напряжения 220В и нуждается в источниках, стабилизированных и по току, и по напряжению, ведь исключительно от этой стабильности зависит продолжительность их службы. Перепады напряжения способны не только отрицательно влиять на срок службы светодиодов, но и могут полностью вывести их из строя. Именно этот фактор является решающим при выборе блока питания, обеспечивающего долговечность и надежность работы светодиодных источников освещения. Очень важно правильно подбирать их, формируя освещение помещений, интерьеров, улиц и рекламы.

Для работы Led лент, светильников и светодиодных модулей применяются блоки питания 12 В, 24 В и более мощные напряжением 48 В, обеспечивающих работу прожекторов и Led светильников, работающих от источников 300мА и 700мА. Именно блоки питания способны обеспечить бесперебойное использование LED освещения в самых разнообразных условиях благодаря защите от перепадов напряжения, увеличения силы тока, коротких замыкания и т.д.

Блок питания 12в для обеспечения надежной работы светодиодных лент может быть двух типов: герметичного и негерметичного. Именно поэтому, делая выбор, необходимо учитывать тот факт, что запас напряжения должен составлять 25% от заявленного энергопотребления. Для обеспечения работы более мощных LED приборов (24 В) предназначены источники питания с различной степенью защиты, которая главным образом обеспечивается конструкцией корпуса.

Герметичные блоки питания для светодиодных лент представляют собой устройства в корпусе с полной защитой от влаги, что позволяет использовать их для создания освещения на улице. Корпус обеспечивает отвод тепла, а степень защиты таких источников составляет IP66. Применяемые для уличного и внутреннего освещения помещений они довольно компактны и оснащены функциями защиты от перенапряжения, коротких замыканий, перегрузки и функцией подстройки тока. Последнюю обеспечивает наличие внутреннего потенциометра.

Негерметичные блоки питания 12В оснащены корпусом из перфорированного пластика или металла не имеющим влагозащиты. Такие устройства могут быть использованы исключительно в закрытых помещениях при условии отсутствия избыточной влаги. Они характеризуются степенью защиты IP20. Такие блоки используют для обеспечения работы светодиодных модулей, RGB контроллеров и Led лент.

Полугерметичные блоки питания, называемые еще всепогодными и влагозащитными, имеют металлический корпус, защищенный от проникновения атмосферных осадков и влаги. Показатель их защиты составляет IP54, а диапазон работы 10-360 Вт, что позволяет использовать их на открытом воздухе.

Розеточные блоки питания (адаптеры) работают непосредственно от электросети и снабжены вилкой. Относятся такие устройства к негерметичным со степенью защиты IP20.

Надежную и продолжительную работу блоков питания 12В обеспечивают клеммники, оснащенные технологическими отверстиями и защитой от выпадения провода, предотвращающей от произвольного отключения. Охлаждение источников питания выполняется за счет свободой конвекции воздуха. Отдельные модели оснащаются специальными вентиляторами.

Приобрести любой блок питания для светодиодных лент можно в нашем интернет магазине, специалисты которого готовым помочь Вам в выборе и оформлении заказа.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector